47#define LV_NAME "loop-vectorize"
48#define DEBUG_TYPE LV_NAME
56 case VPInterleaveEVLSC:
59 case VPWidenStoreEVLSC:
67 ->getCalledScalarFunction()
69 case VPWidenIntrinsicSC:
71 case VPCanonicalIVPHISC:
72 case VPBranchOnMaskSC:
74 case VPFirstOrderRecurrencePHISC:
75 case VPReductionPHISC:
76 case VPScalarIVStepsSC:
80 case VPReductionEVLSC:
82 case VPVectorPointerSC:
83 case VPWidenCanonicalIVSC:
86 case VPWidenIntOrFpInductionSC:
87 case VPWidenLoadEVLSC:
90 case VPWidenPointerInductionSC:
92 case VPWidenSelectSC: {
96 assert((!
I || !
I->mayWriteToMemory()) &&
97 "underlying instruction may write to memory");
109 case VPInstructionSC:
111 case VPWidenLoadEVLSC:
116 ->mayReadFromMemory();
119 ->getCalledScalarFunction()
120 ->onlyWritesMemory();
121 case VPWidenIntrinsicSC:
123 case VPBranchOnMaskSC:
125 case VPFirstOrderRecurrencePHISC:
126 case VPPredInstPHISC:
127 case VPScalarIVStepsSC:
128 case VPWidenStoreEVLSC:
132 case VPReductionEVLSC:
134 case VPVectorPointerSC:
135 case VPWidenCanonicalIVSC:
138 case VPWidenIntOrFpInductionSC:
140 case VPWidenPointerInductionSC:
142 case VPWidenSelectSC: {
146 assert((!
I || !
I->mayReadFromMemory()) &&
147 "underlying instruction may read from memory");
161 case VPFirstOrderRecurrencePHISC:
162 case VPPredInstPHISC:
163 case VPVectorEndPointerSC:
165 case VPInstructionSC: {
171 case VPWidenCallSC: {
175 case VPWidenIntrinsicSC:
178 case VPReductionEVLSC:
179 case VPPartialReductionSC:
181 case VPScalarIVStepsSC:
182 case VPVectorPointerSC:
183 case VPWidenCanonicalIVSC:
186 case VPWidenIntOrFpInductionSC:
188 case VPWidenPointerInductionSC:
190 case VPWidenSelectSC: {
194 assert((!
I || !
I->mayHaveSideEffects()) &&
195 "underlying instruction has side-effects");
198 case VPInterleaveEVLSC:
201 case VPWidenLoadEVLSC:
203 case VPWidenStoreEVLSC:
208 "mayHaveSideffects result for ingredient differs from this "
211 case VPReplicateSC: {
213 return R->getUnderlyingInstr()->mayHaveSideEffects();
221 assert(!Parent &&
"Recipe already in some VPBasicBlock");
223 "Insertion position not in any VPBasicBlock");
229 assert(!Parent &&
"Recipe already in some VPBasicBlock");
235 assert(!Parent &&
"Recipe already in some VPBasicBlock");
237 "Insertion position not in any VPBasicBlock");
272 UI = IG->getInsertPos();
274 UI = &WidenMem->getIngredient();
277 if (UI && Ctx.skipCostComputation(UI, VF.
isVector())) {
287 dbgs() <<
"Cost of " << RecipeCost <<
" for VF " << VF <<
": ";
311 std::optional<unsigned> Opcode;
321 auto *PhiType = Ctx.Types.inferScalarType(
getChainOp());
322 auto *InputType = Ctx.Types.inferScalarType(
getVecOp());
323 return Ctx.TTI.getPartialReductionCost(
getOpcode(), InputType, InputType,
329 Type *InputTypeA =
nullptr, *InputTypeB =
nullptr;
339 if (WidenCastR->getOpcode() == Instruction::CastOps::ZExt)
341 if (WidenCastR->getOpcode() == Instruction::CastOps::SExt)
352 Opcode =
Widen->getOpcode();
355 InputTypeA = Ctx.Types.inferScalarType(ExtAR ? ExtAR->
getOperand(0)
356 :
Widen->getOperand(0));
357 InputTypeB = Ctx.Types.inferScalarType(ExtBR ? ExtBR->
getOperand(0)
358 :
Widen->getOperand(1));
359 ExtAType = GetExtendKind(ExtAR);
360 ExtBType = GetExtendKind(ExtBR);
366 InputTypeB = InputTypeA;
372 InputTypeA = Ctx.Types.inferScalarType(OpR->
getOperand(0));
373 ExtAType = GetExtendKind(OpR);
377 InputTypeA = Ctx.Types.inferScalarType(RedPhiOp1R->getOperand(0));
378 ExtAType = GetExtendKind(RedPhiOp1R);
384 return Reduction->computeCost(VF, Ctx);
386 auto *PhiType = Ctx.Types.inferScalarType(
getOperand(1));
387 return Ctx.TTI.getPartialReductionCost(
getOpcode(), InputTypeA, InputTypeB,
388 PhiType, VF, ExtAType, ExtBType,
389 Opcode, Ctx.CostKind);
393 auto &Builder = State.Builder;
396 "Unhandled partial reduction opcode");
400 assert(PhiVal && BinOpVal &&
"Phi and Mul must be set");
405 Builder.CreateIntrinsic(RetTy, Intrinsic::vector_partial_reduce_add,
406 {PhiVal, BinOpVal},
nullptr,
"partial.reduce");
411#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
414 O << Indent <<
"PARTIAL-REDUCE ";
422 assert(OpType == Other.OpType &&
"OpType must match");
424 case OperationType::OverflowingBinOp:
425 WrapFlags.HasNUW &= Other.WrapFlags.HasNUW;
426 WrapFlags.HasNSW &= Other.WrapFlags.HasNSW;
428 case OperationType::Trunc:
432 case OperationType::DisjointOp:
435 case OperationType::PossiblyExactOp:
436 ExactFlags.IsExact &= Other.ExactFlags.IsExact;
438 case OperationType::GEPOp:
441 case OperationType::FPMathOp:
442 FMFs.NoNaNs &= Other.FMFs.NoNaNs;
443 FMFs.NoInfs &= Other.FMFs.NoInfs;
445 case OperationType::NonNegOp:
448 case OperationType::Cmp:
451 case OperationType::Other:
458 assert(OpType == OperationType::FPMathOp &&
459 "recipe doesn't have fast math flags");
471#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
475template <
unsigned PartOpIdx>
478 if (U.getNumOperands() == PartOpIdx + 1)
479 return U.getOperand(PartOpIdx);
483template <
unsigned PartOpIdx>
502 "Set flags not supported for the provided opcode");
503 assert((getNumOperandsForOpcode(Opcode) == -1u ||
505 "number of operands does not match opcode");
509unsigned VPInstruction::getNumOperandsForOpcode(
unsigned Opcode) {
520 case Instruction::Alloca:
521 case Instruction::ExtractValue:
522 case Instruction::Freeze:
523 case Instruction::Load:
538 case Instruction::ICmp:
539 case Instruction::FCmp:
540 case Instruction::Store:
549 case Instruction::Select:
556 case Instruction::Call:
557 case Instruction::GetElementPtr:
558 case Instruction::PHI:
559 case Instruction::Switch:
571bool VPInstruction::canGenerateScalarForFirstLane()
const {
577 case Instruction::Freeze:
578 case Instruction::ICmp:
579 case Instruction::PHI:
580 case Instruction::Select:
606 BasicBlock *SecondIRSucc = State.CFG.VPBB2IRBB.lookup(SecondVPSucc);
608 BranchInst *CondBr = State.Builder.CreateCondBr(
Cond, IRBB, SecondIRSucc);
616 IRBuilderBase &Builder = State.
Builder;
635 case Instruction::ExtractElement: {
638 unsigned IdxToExtract =
646 case Instruction::Freeze: {
650 case Instruction::FCmp:
651 case Instruction::ICmp: {
657 case Instruction::PHI: {
660 case Instruction::Select: {
687 {VIVElem0, ScalarTC},
nullptr, Name);
703 if (!V1->getType()->isVectorTy())
723 "Requested vector length should be an integer.");
730 {AVL, VFArg, State.Builder.getTrue()});
736 assert(Part != 0 &&
"Must have a positive part");
767 for (
unsigned FieldIndex = 0; FieldIndex != StructTy->getNumElements();
791 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
821 RecurKind RK = PhiR->getRecurrenceKind();
823 "Unexpected reduction kind");
824 assert(!PhiR->isInLoop() &&
825 "In-loop FindLastIV reduction is not supported yet");
837 for (
unsigned Part = 1; Part <
UF; ++Part)
838 ReducedPartRdx =
createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx,
852 RecurKind RK = PhiR->getRecurrenceKind();
854 "should be handled by ComputeFindIVResult");
860 for (
unsigned Part = 0; Part <
UF; ++Part)
861 RdxParts[Part] = State.
get(
getOperand(1 + Part), PhiR->isInLoop());
863 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
868 Value *ReducedPartRdx = RdxParts[0];
869 if (PhiR->isOrdered()) {
870 ReducedPartRdx = RdxParts[
UF - 1];
873 for (
unsigned Part = 1; Part <
UF; ++Part) {
874 Value *RdxPart = RdxParts[Part];
876 ReducedPartRdx =
createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
882 Opcode = Instruction::Add;
887 Builder.
CreateBinOp(Opcode, RdxPart, ReducedPartRdx,
"bin.rdx");
894 if (State.
VF.
isVector() && !PhiR->isInLoop()) {
901 return ReducedPartRdx;
911 "invalid offset to extract from");
915 assert(
Offset <= 1 &&
"invalid offset to extract from");
929 "can only generate first lane for PtrAdd");
943 Res = Builder.CreateOr(Res, Builder.CreateFreeze(State.get(
Op)));
944 return State.VF.isScalar() ? Res : Builder.CreateOrReduce(Res);
949 Value *Res =
nullptr;
954 Builder.
CreateMul(RuntimeVF, ConstantInt::get(IdxTy, Idx - 1));
955 Value *VectorIdx = Idx == 1
957 : Builder.
CreateSub(LaneToExtract, VectorStart);
983 Value *Res =
nullptr;
984 for (
int Idx = LastOpIdx; Idx >= 0; --Idx) {
985 Value *TrailingZeros =
1015 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
1018 case Instruction::FNeg:
1019 return Ctx.TTI.getArithmeticInstrCost(Opcode, ResultTy, Ctx.CostKind);
1020 case Instruction::UDiv:
1021 case Instruction::SDiv:
1022 case Instruction::SRem:
1023 case Instruction::URem:
1024 case Instruction::Add:
1025 case Instruction::FAdd:
1026 case Instruction::Sub:
1027 case Instruction::FSub:
1028 case Instruction::Mul:
1029 case Instruction::FMul:
1030 case Instruction::FDiv:
1031 case Instruction::FRem:
1032 case Instruction::Shl:
1033 case Instruction::LShr:
1034 case Instruction::AShr:
1035 case Instruction::And:
1036 case Instruction::Or:
1037 case Instruction::Xor: {
1045 RHSInfo = Ctx.getOperandInfo(RHS);
1056 return Ctx.TTI.getArithmeticInstrCost(
1057 Opcode, ResultTy, Ctx.CostKind,
1058 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
1059 RHSInfo, Operands, CtxI, &Ctx.TLI);
1061 case Instruction::Freeze:
1063 return Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, ResultTy,
1065 case Instruction::ExtractValue:
1066 return Ctx.TTI.getInsertExtractValueCost(Instruction::ExtractValue,
1068 case Instruction::ICmp:
1069 case Instruction::FCmp: {
1073 return Ctx.TTI.getCmpSelInstrCost(
1075 Ctx.CostKind, {TTI::OK_AnyValue, TTI::OP_None},
1076 {TTI::OK_AnyValue, TTI::OP_None}, CtxI);
1092 "Should only generate a vector value or single scalar, not scalars "
1100 case Instruction::Select: {
1104 auto *CondTy = Ctx.Types.inferScalarType(
getOperand(0));
1105 auto *VecTy = Ctx.Types.inferScalarType(
getOperand(1));
1110 return Ctx.TTI.getCmpSelInstrCost(Instruction::Select, VecTy, CondTy, Pred,
1113 case Instruction::ExtractElement:
1123 return Ctx.TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy,
1127 auto *VecTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1128 return Ctx.TTI.getArithmeticReductionCost(
1134 return Ctx.TTI.getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
1141 {PredTy, Type::getInt1Ty(Ctx.LLVMCtx)});
1142 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1148 Type *VectorTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1157 unsigned Multiplier =
1162 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1169 I32Ty, {Arg0Ty, I32Ty, I1Ty});
1170 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1175 return Ctx.TTI.getIndexedVectorInstrCostFromEnd(Instruction::ExtractElement,
1176 VecTy, Ctx.CostKind, 0);
1186 "unexpected VPInstruction witht underlying value");
1195 getOpcode() == Instruction::ExtractElement ||
1206 case Instruction::PHI:
1217 assert(!State.Lane &&
"VPInstruction executing an Lane");
1220 "Set flags not supported for the provided opcode");
1223 Value *GeneratedValue = generate(State);
1226 assert(GeneratedValue &&
"generate must produce a value");
1227 bool GeneratesPerFirstLaneOnly = canGenerateScalarForFirstLane() &&
1232 !GeneratesPerFirstLaneOnly) ||
1233 State.VF.isScalar()) &&
1234 "scalar value but not only first lane defined");
1235 State.set(
this, GeneratedValue,
1236 GeneratesPerFirstLaneOnly);
1243 case Instruction::ExtractElement:
1244 case Instruction::Freeze:
1245 case Instruction::FCmp:
1246 case Instruction::ICmp:
1247 case Instruction::Select:
1248 case Instruction::PHI:
1287 case Instruction::ExtractElement:
1289 case Instruction::PHI:
1291 case Instruction::FCmp:
1292 case Instruction::ICmp:
1293 case Instruction::Select:
1294 case Instruction::Or:
1295 case Instruction::Freeze:
1336 case Instruction::FCmp:
1337 case Instruction::ICmp:
1338 case Instruction::Select:
1348#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1356 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1368 O <<
"combined load";
1371 O <<
"combined store";
1374 O <<
"active lane mask";
1377 O <<
"EXPLICIT-VECTOR-LENGTH";
1380 O <<
"first-order splice";
1383 O <<
"branch-on-cond";
1386 O <<
"TC > VF ? TC - VF : 0";
1392 O <<
"branch-on-count";
1398 O <<
"buildstructvector";
1404 O <<
"extract-lane";
1407 O <<
"extract-last-element";
1410 O <<
"extract-last-lane-per-part";
1413 O <<
"extract-penultimate-element";
1416 O <<
"compute-anyof-result";
1419 O <<
"compute-find-iv-result";
1422 O <<
"compute-reduction-result";
1437 O <<
"first-active-lane";
1440 O <<
"reduction-start-vector";
1443 O <<
"resume-for-epilogue";
1468 State.set(
this, Cast,
VPLane(0));
1479 Value *
VScale = State.Builder.CreateVScale(ResultTy);
1480 State.set(
this,
VScale,
true);
1489#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1492 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1498 O <<
"wide-iv-step ";
1502 O <<
"step-vector " << *ResultTy;
1505 O <<
"vscale " << *ResultTy;
1511 O <<
" to " << *ResultTy;
1518 PHINode *NewPhi = State.Builder.CreatePHI(
1519 State.TypeAnalysis.inferScalarType(
this), 2,
getName());
1526 for (
unsigned Idx = 0; Idx != NumIncoming; ++Idx) {
1531 State.set(
this, NewPhi,
VPLane(0));
1534#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1537 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1552 "PHINodes must be handled by VPIRPhi");
1555 State.Builder.SetInsertPoint(I.getParent(), std::next(I.getIterator()));
1567 "can only update exiting operands to phi nodes");
1577#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1580 O << Indent <<
"IR " << I;
1592 auto *PredVPBB = Pred->getExitingBasicBlock();
1593 BasicBlock *PredBB = State.CFG.VPBB2IRBB[PredVPBB];
1600 if (Phi->getBasicBlockIndex(PredBB) == -1)
1601 Phi->addIncoming(V, PredBB);
1603 Phi->setIncomingValueForBlock(PredBB, V);
1608 State.Builder.SetInsertPoint(Phi->getParent(), std::next(Phi->getIterator()));
1613 assert(R->getNumOperands() == R->getParent()->getNumPredecessors() &&
1614 "Number of phi operands must match number of predecessors");
1615 unsigned Position = R->getParent()->getIndexForPredecessor(IncomingBlock);
1616 R->removeOperand(Position);
1619#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1633#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1639 O <<
" (extra operand" << (
getNumOperands() > 1 ?
"s" :
"") <<
": ";
1644 std::get<1>(
Op)->printAsOperand(O);
1657 Metadata.emplace_back(LLVMContext::MD_alias_scope, AliasScopeMD);
1659 Metadata.emplace_back(LLVMContext::MD_noalias, NoAliasMD);
1663 for (
const auto &[Kind,
Node] : Metadata)
1664 I.setMetadata(Kind,
Node);
1669 for (
const auto &[KindA, MDA] : Metadata) {
1670 for (
const auto &[KindB, MDB] :
Other.Metadata) {
1671 if (KindA == KindB && MDA == MDB) {
1677 Metadata = std::move(MetadataIntersection);
1681 assert(State.VF.isVector() &&
"not widening");
1682 assert(Variant !=
nullptr &&
"Can't create vector function.");
1693 Arg = State.get(
I.value(),
VPLane(0));
1696 Args.push_back(Arg);
1702 CI->getOperandBundlesAsDefs(OpBundles);
1704 CallInst *V = State.Builder.CreateCall(Variant, Args, OpBundles);
1707 V->setCallingConv(Variant->getCallingConv());
1709 if (!V->getType()->isVoidTy())
1715 return Ctx.TTI.getCallInstrCost(
nullptr, Variant->getReturnType(),
1716 Variant->getFunctionType()->params(),
1720#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1723 O << Indent <<
"WIDEN-CALL ";
1735 O <<
" @" << CalledFn->
getName() <<
"(";
1741 O <<
" (using library function";
1742 if (Variant->hasName())
1743 O <<
": " << Variant->getName();
1749 assert(State.VF.isVector() &&
"not widening");
1762 Arg = State.get(
I.value(),
VPLane(0));
1768 Args.push_back(Arg);
1772 Module *M = State.Builder.GetInsertBlock()->getModule();
1776 "Can't retrieve vector intrinsic or vector-predication intrinsics.");
1781 CI->getOperandBundlesAsDefs(OpBundles);
1783 CallInst *V = State.Builder.CreateCall(VectorF, Args, OpBundles);
1788 if (!V->getType()->isVoidTy())
1804 for (
const auto &[Idx,
Op] :
enumerate(Operands)) {
1805 auto *V =
Op->getUnderlyingValue();
1808 Arguments.push_back(UI->getArgOperand(Idx));
1817 Type *ScalarRetTy = Ctx.Types.inferScalarType(&R);
1823 : Ctx.Types.inferScalarType(
Op));
1828 R.hasFastMathFlags() ? R.getFastMathFlags() :
FastMathFlags();
1833 return Ctx.TTI.getIntrinsicInstrCost(CostAttrs, Ctx.CostKind);
1855#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1858 O << Indent <<
"WIDEN-INTRINSIC ";
1859 if (ResultTy->isVoidTy()) {
1887 Value *Mask =
nullptr;
1889 Mask = State.get(VPMask);
1892 Builder.CreateVectorSplat(VTy->
getElementCount(), Builder.getInt1(1));
1896 if (Opcode == Instruction::Sub)
1897 IncAmt = Builder.CreateNeg(IncAmt);
1899 assert(Opcode == Instruction::Add &&
"only add or sub supported for now");
1901 State.Builder.CreateIntrinsic(Intrinsic::experimental_vector_histogram_add,
1916 Type *IncTy = Ctx.Types.inferScalarType(IncAmt);
1922 Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, VTy, Ctx.CostKind);
1935 {PtrTy, IncTy, MaskTy});
1938 return Ctx.TTI.getIntrinsicInstrCost(ICA, Ctx.CostKind) + MulCost +
1939 Ctx.TTI.getArithmeticInstrCost(Opcode, VTy, Ctx.CostKind);
1942#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1945 O << Indent <<
"WIDEN-HISTOGRAM buckets: ";
1948 if (Opcode == Instruction::Sub)
1951 assert(Opcode == Instruction::Add);
1964 O << Indent <<
"WIDEN-SELECT ";
1983 Value *Sel = State.Builder.CreateSelect(
Cond, Op0, Op1);
1984 State.set(
this, Sel);
1996 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
1997 Type *VectorTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
2005 const auto [Op1VK, Op1VP] = Ctx.getOperandInfo(Op0);
2006 const auto [Op2VK, Op2VP] = Ctx.getOperandInfo(Op1);
2010 [](
VPValue *
Op) {
return Op->getUnderlyingValue(); }))
2011 Operands.
append(
SI->op_begin(),
SI->op_end());
2013 return Ctx.TTI.getArithmeticInstrCost(
2014 IsLogicalOr ? Instruction::Or : Instruction::And, VectorTy,
2015 Ctx.CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, Operands,
SI);
2024 Pred = Cmp->getPredicate();
2025 return Ctx.TTI.getCmpSelInstrCost(
2026 Instruction::Select, VectorTy, CondTy, Pred, Ctx.CostKind,
2027 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None},
SI);
2030VPIRFlags::FastMathFlagsTy::FastMathFlagsTy(
const FastMathFlags &FMF) {
2043 case OperationType::OverflowingBinOp:
2044 return Opcode == Instruction::Add || Opcode == Instruction::Sub ||
2045 Opcode == Instruction::Mul ||
2046 Opcode == VPInstruction::VPInstruction::CanonicalIVIncrementForPart;
2047 case OperationType::Trunc:
2048 return Opcode == Instruction::Trunc;
2049 case OperationType::DisjointOp:
2050 return Opcode == Instruction::Or;
2051 case OperationType::PossiblyExactOp:
2052 return Opcode == Instruction::AShr;
2053 case OperationType::GEPOp:
2054 return Opcode == Instruction::GetElementPtr ||
2057 case OperationType::FPMathOp:
2058 return Opcode == Instruction::FAdd || Opcode == Instruction::FMul ||
2059 Opcode == Instruction::FSub || Opcode == Instruction::FNeg ||
2060 Opcode == Instruction::FDiv || Opcode == Instruction::FRem ||
2061 Opcode == Instruction::FPExt || Opcode == Instruction::FPTrunc ||
2062 Opcode == Instruction::FCmp || Opcode == Instruction::Select ||
2066 case OperationType::NonNegOp:
2067 return Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP;
2068 case OperationType::Cmp:
2069 return Opcode == Instruction::FCmp || Opcode == Instruction::ICmp;
2070 case OperationType::Other:
2077#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2080 case OperationType::Cmp:
2083 case OperationType::DisjointOp:
2087 case OperationType::PossiblyExactOp:
2091 case OperationType::OverflowingBinOp:
2097 case OperationType::Trunc:
2103 case OperationType::FPMathOp:
2106 case OperationType::GEPOp:
2109 else if (
GEPFlags.hasNoUnsignedSignedWrap())
2114 case OperationType::NonNegOp:
2118 case OperationType::Other:
2126 auto &Builder = State.Builder;
2128 case Instruction::Call:
2129 case Instruction::Br:
2130 case Instruction::PHI:
2131 case Instruction::GetElementPtr:
2132 case Instruction::Select:
2134 case Instruction::UDiv:
2135 case Instruction::SDiv:
2136 case Instruction::SRem:
2137 case Instruction::URem:
2138 case Instruction::Add:
2139 case Instruction::FAdd:
2140 case Instruction::Sub:
2141 case Instruction::FSub:
2142 case Instruction::FNeg:
2143 case Instruction::Mul:
2144 case Instruction::FMul:
2145 case Instruction::FDiv:
2146 case Instruction::FRem:
2147 case Instruction::Shl:
2148 case Instruction::LShr:
2149 case Instruction::AShr:
2150 case Instruction::And:
2151 case Instruction::Or:
2152 case Instruction::Xor: {
2156 Ops.push_back(State.get(VPOp));
2158 Value *V = Builder.CreateNAryOp(Opcode,
Ops);
2169 case Instruction::ExtractValue: {
2173 Value *Extract = Builder.CreateExtractValue(
Op, CI->getZExtValue());
2174 State.set(
this, Extract);
2177 case Instruction::Freeze: {
2179 Value *Freeze = Builder.CreateFreeze(
Op);
2180 State.set(
this, Freeze);
2183 case Instruction::ICmp:
2184 case Instruction::FCmp: {
2186 bool FCmp = Opcode == Instruction::FCmp;
2192 C = Builder.CreateFCmpFMF(
2214 State.get(
this)->getType() &&
2215 "inferred type and type from generated instructions do not match");
2222 case Instruction::UDiv:
2223 case Instruction::SDiv:
2224 case Instruction::SRem:
2225 case Instruction::URem:
2230 case Instruction::FNeg:
2231 case Instruction::Add:
2232 case Instruction::FAdd:
2233 case Instruction::Sub:
2234 case Instruction::FSub:
2235 case Instruction::Mul:
2236 case Instruction::FMul:
2237 case Instruction::FDiv:
2238 case Instruction::FRem:
2239 case Instruction::Shl:
2240 case Instruction::LShr:
2241 case Instruction::AShr:
2242 case Instruction::And:
2243 case Instruction::Or:
2244 case Instruction::Xor:
2245 case Instruction::Freeze:
2246 case Instruction::ExtractValue:
2247 case Instruction::ICmp:
2248 case Instruction::FCmp:
2255#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2258 O << Indent <<
"WIDEN ";
2267 auto &Builder = State.Builder;
2269 assert(State.VF.isVector() &&
"Not vectorizing?");
2274 State.set(
this, Cast);
2298 if (WidenMemoryRecipe ==
nullptr)
2300 if (!WidenMemoryRecipe->isConsecutive())
2302 if (WidenMemoryRecipe->isReverse())
2304 if (WidenMemoryRecipe->isMasked())
2312 if ((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
2315 CCH = ComputeCCH(StoreRecipe);
2318 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
2319 Opcode == Instruction::FPExt) {
2330 return Ctx.TTI.getCastInstrCost(
2331 Opcode, DestTy, SrcTy, CCH, Ctx.CostKind,
2335#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2338 O << Indent <<
"WIDEN-CAST ";
2349 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
2356 : ConstantFP::get(Ty,
C);
2359#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2364 O <<
" = WIDEN-INDUCTION ";
2368 O <<
" (truncated to " << *TI->getType() <<
")";
2380 return StartC && StartC->isZero() && StepC && StepC->isOne() &&
2384#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2389 O <<
" = DERIVED-IV ";
2413 assert(BaseIVTy == Step->
getType() &&
"Types of BaseIV and Step must match!");
2420 AddOp = Instruction::Add;
2421 MulOp = Instruction::Mul;
2423 AddOp = InductionOpcode;
2424 MulOp = Instruction::FMul;
2433 Type *VecIVTy =
nullptr;
2434 Value *UnitStepVec =
nullptr, *SplatStep =
nullptr, *SplatIV =
nullptr;
2435 if (!FirstLaneOnly && State.VF.isScalable()) {
2439 SplatStep = Builder.CreateVectorSplat(State.VF, Step);
2440 SplatIV = Builder.CreateVectorSplat(State.VF, BaseIV);
2443 unsigned StartLane = 0;
2444 unsigned EndLane = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2446 StartLane = State.Lane->getKnownLane();
2447 EndLane = StartLane + 1;
2451 StartIdx0 = ConstantInt::get(IntStepTy, 0);
2456 Builder.CreateMul(StartIdx0, ConstantInt::get(StartIdx0->
getType(),
2459 StartIdx0 = Builder.CreateSExtOrTrunc(StartIdx0, IntStepTy);
2462 if (!FirstLaneOnly && State.VF.isScalable()) {
2463 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
2464 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2466 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2467 auto *
Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2468 auto *
Add = Builder.CreateBinOp(AddOp, SplatIV,
Mul);
2469 State.set(
this,
Add);
2476 StartIdx0 = Builder.CreateSIToFP(StartIdx0, BaseIVTy);
2478 for (
unsigned Lane = StartLane; Lane < EndLane; ++Lane) {
2479 Value *StartIdx = Builder.CreateBinOp(
2484 "Expected StartIdx to be folded to a constant when VF is not "
2486 auto *
Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2487 auto *
Add = Builder.CreateBinOp(AddOp, BaseIV,
Mul);
2492#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2497 O <<
" = SCALAR-STEPS ";
2503 assert(State.VF.isVector() &&
"not widening");
2510 if (areAllOperandsInvariant()) {
2530 Value *
Splat = State.Builder.CreateVectorSplat(State.VF, NewGEP);
2531 State.set(
this,
Splat);
2537 auto *
Ptr = State.get(
getOperand(0), isPointerLoopInvariant());
2544 Indices.
push_back(State.get(Operand, isIndexLoopInvariant(
I - 1)));
2551 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
2552 "NewGEP is not a pointer vector");
2553 State.set(
this, NewGEP);
2557#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2560 O << Indent <<
"WIDEN-GEP ";
2561 O << (isPointerLoopInvariant() ?
"Inv" :
"Var");
2563 O <<
"[" << (isIndexLoopInvariant(
I) ?
"Inv" :
"Var") <<
"]";
2567 O <<
" = getelementptr";
2577 const DataLayout &
DL = Builder.GetInsertBlock()->getDataLayout();
2578 return !IsUnitStride || (IsScalable && (IsReverse || CurrentPart > 0))
2579 ?
DL.getIndexType(Builder.getPtrTy(0))
2580 : Builder.getInt32Ty();
2584 auto &Builder = State.Builder;
2586 bool IsUnitStride = Stride == 1 || Stride == -1;
2588 IsUnitStride, CurrentPart, Builder);
2592 if (IndexTy != RunTimeVF->
getType())
2593 RunTimeVF = Builder.CreateZExtOrTrunc(RunTimeVF, IndexTy);
2595 Value *NumElt = Builder.CreateMul(
2596 ConstantInt::get(IndexTy, Stride * (int64_t)CurrentPart), RunTimeVF);
2598 Value *LastLane = Builder.CreateSub(RunTimeVF, ConstantInt::get(IndexTy, 1));
2600 LastLane = Builder.CreateMul(ConstantInt::get(IndexTy, Stride), LastLane);
2604 ResultPtr = Builder.CreateGEP(IndexedTy, ResultPtr, LastLane,
"",
2607 State.set(
this, ResultPtr,
true);
2610#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2615 O <<
" = vector-end-pointer";
2622 auto &Builder = State.Builder;
2625 true, CurrentPart, Builder);
2632 State.set(
this, ResultPtr,
true);
2635#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2640 O <<
" = vector-pointer ";
2651 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
2653 Type *ResultTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
2656 Ctx.TTI.getCmpSelInstrCost(Instruction::Select, ResultTy, CmpTy,
2660#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2663 O << Indent <<
"BLEND ";
2685 assert(!State.Lane &&
"Reduction being replicated.");
2689 "In-loop AnyOf reductions aren't currently supported");
2695 Value *NewCond = State.get(
Cond, State.VF.isScalar());
2700 if (State.VF.isVector())
2701 Start = State.Builder.CreateVectorSplat(VecTy->
getElementCount(), Start);
2703 Value *
Select = State.Builder.CreateSelect(NewCond, NewVecOp, Start);
2709 if (State.VF.isVector())
2713 NewRed = State.Builder.CreateBinOp(
2715 PrevInChain, NewVecOp);
2716 PrevInChain = NewRed;
2717 NextInChain = NewRed;
2722 NextInChain =
createMinMaxOp(State.Builder, Kind, NewRed, PrevInChain);
2724 NextInChain = State.Builder.CreateBinOp(
2726 PrevInChain, NewRed);
2728 State.set(
this, NextInChain,
true);
2732 assert(!State.Lane &&
"Reduction being replicated.");
2734 auto &Builder = State.Builder;
2746 Mask = State.get(CondOp);
2748 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
2758 NewRed = Builder.CreateBinOp(
2762 State.set(
this, NewRed,
true);
2768 Type *ElementTy = Ctx.Types.inferScalarType(
this);
2772 std::optional<FastMathFlags> OptionalFMF =
2779 "Any-of reduction not implemented in VPlan-based cost model currently.");
2785 return Ctx.TTI.getMinMaxReductionCost(Id, VectorTy,
FMFs, Ctx.CostKind);
2790 return Ctx.TTI.getArithmeticReductionCost(Opcode, VectorTy, OptionalFMF,
2795 ExpressionTypes ExpressionType,
2798 ExpressionRecipes(ExpressionRecipes),
ExpressionType(ExpressionType) {
2799 assert(!ExpressionRecipes.empty() &&
"Nothing to combine?");
2803 "expression cannot contain recipes with side-effects");
2807 for (
auto *R : ExpressionRecipes)
2808 ExpressionRecipesAsSetOfUsers.
insert(R);
2814 if (R != ExpressionRecipes.back() &&
2815 any_of(
R->users(), [&ExpressionRecipesAsSetOfUsers](
VPUser *U) {
2816 return !ExpressionRecipesAsSetOfUsers.contains(U);
2821 R->replaceUsesWithIf(CopyForExtUsers, [&ExpressionRecipesAsSetOfUsers](
2823 return !ExpressionRecipesAsSetOfUsers.contains(&U);
2828 R->removeFromParent();
2835 for (
auto *R : ExpressionRecipes) {
2836 for (
const auto &[Idx,
Op] :
enumerate(
R->operands())) {
2837 auto *
Def =
Op->getDefiningRecipe();
2838 if (Def && ExpressionRecipesAsSetOfUsers.contains(Def))
2841 LiveInPlaceholders.push_back(
new VPValue());
2847 for (
auto *R : ExpressionRecipes)
2848 for (
auto const &[LiveIn, Tmp] :
zip(operands(), LiveInPlaceholders))
2849 R->replaceUsesOfWith(LiveIn, Tmp);
2853 for (
auto *R : ExpressionRecipes)
2856 if (!R->getParent())
2857 R->insertBefore(
this);
2860 LiveInPlaceholders[Idx]->replaceAllUsesWith(
Op);
2863 ExpressionRecipes.clear();
2868 Type *RedTy = Ctx.Types.inferScalarType(
this);
2872 "VPExpressionRecipe only supports integer types currently.");
2875 switch (ExpressionType) {
2876 case ExpressionTypes::ExtendedReduction: {
2881 ? Ctx.TTI.getPartialReductionCost(
2882 Opcode, Ctx.Types.inferScalarType(
getOperand(0)),
nullptr,
2887 : Ctx.TTI.getExtendedReductionCost(
2888 Opcode, ExtR->getOpcode() == Instruction::ZExt, RedTy,
2889 SrcVecTy, std::nullopt, Ctx.CostKind);
2891 case ExpressionTypes::MulAccReduction:
2892 return Ctx.TTI.getMulAccReductionCost(
false, Opcode, RedTy, SrcVecTy,
2895 case ExpressionTypes::ExtNegatedMulAccReduction:
2896 assert(Opcode == Instruction::Add &&
"Unexpected opcode");
2897 Opcode = Instruction::Sub;
2899 case ExpressionTypes::ExtMulAccReduction: {
2904 return Ctx.TTI.getPartialReductionCost(
2905 Opcode, Ctx.Types.inferScalarType(
getOperand(0)),
2906 Ctx.Types.inferScalarType(
getOperand(1)), RedTy, VF,
2908 Ext0R->getOpcode()),
2910 Ext1R->getOpcode()),
2911 Mul->getOpcode(), Ctx.CostKind);
2913 return Ctx.TTI.getMulAccReductionCost(
2916 Opcode, RedTy, SrcVecTy, Ctx.CostKind);
2924 return R->mayReadFromMemory() || R->mayWriteToMemory();
2932 "expression cannot contain recipes with side-effects");
2943#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2947 O << Indent <<
"EXPRESSION ";
2954 switch (ExpressionType) {
2955 case ExpressionTypes::ExtendedReduction: {
2957 O <<
" + " << (IsPartialReduction ?
"partial." :
"") <<
"reduce.";
2964 << *Ext0->getResultType();
2965 if (Red->isConditional()) {
2972 case ExpressionTypes::ExtNegatedMulAccReduction: {
2974 O <<
" + " << (IsPartialReduction ?
"partial." :
"") <<
"reduce.";
2984 << *Ext0->getResultType() <<
"), (";
2988 << *Ext1->getResultType() <<
")";
2989 if (Red->isConditional()) {
2996 case ExpressionTypes::MulAccReduction:
2997 case ExpressionTypes::ExtMulAccReduction: {
2999 O <<
" + " << (IsPartialReduction ?
"partial." :
"") <<
"reduce.";
3004 bool IsExtended = ExpressionType == ExpressionTypes::ExtMulAccReduction;
3006 : ExpressionRecipes[0]);
3014 << *Ext0->getResultType() <<
"), (";
3022 << *Ext1->getResultType() <<
")";
3024 if (Red->isConditional()) {
3036 O << Indent <<
"REDUCE ";
3056 O << Indent <<
"REDUCE ";
3084 assert((!Instr->getType()->isAggregateType() ||
3086 "Expected vectorizable or non-aggregate type.");
3089 bool IsVoidRetTy = Instr->getType()->isVoidTy();
3093 Cloned->
setName(Instr->getName() +
".cloned");
3094 Type *ResultTy = State.TypeAnalysis.inferScalarType(RepRecipe);
3098 if (ResultTy != Cloned->
getType())
3109 State.setDebugLocFrom(
DL);
3114 auto InputLane = Lane;
3118 Cloned->
setOperand(
I.index(), State.get(Operand, InputLane));
3122 State.Builder.Insert(Cloned);
3124 State.set(RepRecipe, Cloned, Lane);
3128 State.AC->registerAssumption(
II);
3134 [](
VPValue *
Op) { return Op->isDefinedOutsideLoopRegions(); })) &&
3135 "Expected a recipe is either within a region or all of its operands "
3136 "are defined outside the vectorized region.");
3143 assert(IsSingleScalar &&
"VPReplicateRecipes outside replicate regions "
3144 "must have already been unrolled");
3150 "uniform recipe shouldn't be predicated");
3151 assert(!State.VF.isScalable() &&
"Can't scalarize a scalable vector");
3156 State.Lane->isFirstLane()
3159 State.set(
this, State.packScalarIntoVectorizedValue(
this, WideValue,
3181 auto *PtrR =
Ptr->getDefiningRecipe();
3184 Instruction::GetElementPtr) ||
3192 if (!Opd->isDefinedOutsideLoopRegions() &&
3206 while (!WorkList.
empty()) {
3208 if (!Cur || !Seen.
insert(Cur).second)
3216 return Seen.contains(
3217 Blend->getIncomingValue(I)->getDefiningRecipe());
3221 for (
VPUser *U : Cur->users()) {
3223 if (InterleaveR->getAddr() == Cur)
3226 if (RepR->getOpcode() == Instruction::Load &&
3227 RepR->getOperand(0) == Cur)
3229 if (RepR->getOpcode() == Instruction::Store &&
3230 RepR->getOperand(1) == Cur)
3234 if (MemR->getAddr() == Cur && MemR->isConsecutive())
3255 Ctx.SkipCostComputation.insert(UI);
3261 case Instruction::GetElementPtr:
3267 case Instruction::Call: {
3273 for (
const VPValue *ArgOp : ArgOps)
3274 Tys.
push_back(Ctx.Types.inferScalarType(ArgOp));
3276 if (CalledFn->isIntrinsic())
3279 switch (CalledFn->getIntrinsicID()) {
3280 case Intrinsic::assume:
3281 case Intrinsic::lifetime_end:
3282 case Intrinsic::lifetime_start:
3283 case Intrinsic::sideeffect:
3284 case Intrinsic::pseudoprobe:
3285 case Intrinsic::experimental_noalias_scope_decl: {
3288 "scalarizing intrinsic should be free");
3295 Type *ResultTy = Ctx.Types.inferScalarType(
this);
3297 Ctx.TTI.getCallInstrCost(CalledFn, ResultTy, Tys, Ctx.CostKind);
3299 if (CalledFn->isIntrinsic())
3300 ScalarCallCost = std::min(
3304 return ScalarCallCost;
3308 Ctx.getScalarizationOverhead(ResultTy, ArgOps, VF);
3310 case Instruction::Add:
3311 case Instruction::Sub:
3312 case Instruction::FAdd:
3313 case Instruction::FSub:
3314 case Instruction::Mul:
3315 case Instruction::FMul:
3316 case Instruction::FDiv:
3317 case Instruction::FRem:
3318 case Instruction::Shl:
3319 case Instruction::LShr:
3320 case Instruction::AShr:
3321 case Instruction::And:
3322 case Instruction::Or:
3323 case Instruction::Xor:
3324 case Instruction::ICmp:
3325 case Instruction::FCmp:
3329 case Instruction::SDiv:
3330 case Instruction::UDiv:
3331 case Instruction::SRem:
3332 case Instruction::URem: {
3339 Ctx.getScalarizationOverhead(Ctx.Types.inferScalarType(
this),
3348 Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
3355 case Instruction::Load:
3356 case Instruction::Store: {
3363 bool IsLoad = UI->
getOpcode() == Instruction::Load;
3369 Type *ValTy = Ctx.Types.inferScalarType(IsLoad ?
this :
getOperand(0));
3370 Type *ScalarPtrTy = Ctx.Types.inferScalarType(PtrOp);
3375 UI->
getOpcode(), ValTy, Alignment, AS, Ctx.CostKind, OpInfo);
3378 bool PreferVectorizedAddressing = Ctx.TTI.prefersVectorizedAddressing();
3379 bool UsedByLoadStoreAddress =
3382 ScalarMemOpCost + Ctx.TTI.getAddressComputationCost(
3383 PtrTy, UsedByLoadStoreAddress ?
nullptr : &Ctx.SE,
3384 PtrSCEV, Ctx.CostKind);
3394 if (!UsedByLoadStoreAddress) {
3395 bool EfficientVectorLoadStore =
3396 Ctx.TTI.supportsEfficientVectorElementLoadStore();
3397 if (!(IsLoad && !PreferVectorizedAddressing) &&
3398 !(!IsLoad && EfficientVectorLoadStore))
3401 if (!EfficientVectorLoadStore)
3402 ResultTy = Ctx.Types.inferScalarType(
this);
3406 Ctx.getScalarizationOverhead(ResultTy, OpsToScalarize, VF,
true);
3410 return Ctx.getLegacyCost(UI, VF);
3413#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3416 O << Indent << (IsSingleScalar ?
"CLONE " :
"REPLICATE ");
3425 O <<
"@" << CB->getCalledFunction()->getName() <<
"(";
3443 assert(State.Lane &&
"Branch on Mask works only on single instance.");
3446 Value *ConditionBit = State.get(BlockInMask, *State.Lane);
3450 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
3452 "Expected to replace unreachable terminator with conditional branch.");
3454 State.Builder.CreateCondBr(ConditionBit, State.CFG.PrevBB,
nullptr);
3455 CondBr->setSuccessor(0,
nullptr);
3456 CurrentTerminator->eraseFromParent();
3468 assert(State.Lane &&
"Predicated instruction PHI works per instance.");
3473 assert(PredicatingBB &&
"Predicated block has no single predecessor.");
3475 "operand must be VPReplicateRecipe");
3486 "Packed operands must generate an insertelement or insertvalue");
3494 for (
unsigned I = 0;
I < StructTy->getNumContainedTypes() - 1;
I++)
3497 PHINode *VPhi = State.Builder.CreatePHI(VecI->getType(), 2);
3498 VPhi->
addIncoming(VecI->getOperand(0), PredicatingBB);
3500 if (State.hasVectorValue(
this))
3501 State.reset(
this, VPhi);
3503 State.set(
this, VPhi);
3511 Type *PredInstType = State.TypeAnalysis.inferScalarType(
getOperand(0));
3512 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
3515 Phi->addIncoming(ScalarPredInst, PredicatedBB);
3516 if (State.hasScalarValue(
this, *State.Lane))
3517 State.reset(
this, Phi, *State.Lane);
3519 State.set(
this, Phi, *State.Lane);
3522 State.reset(
getOperand(0), Phi, *State.Lane);
3526#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3529 O << Indent <<
"PHI-PREDICATED-INSTRUCTION ";
3540 ->getAddressSpace();
3543 : Instruction::Store;
3550 "Inconsecutive memory access should not have the order.");
3560 return Ctx.TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
3569 Ctx.TTI.getMaskedMemoryOpCost(Opcode, Ty,
Alignment, AS, Ctx.CostKind);
3574 Cost += Ctx.TTI.getMemoryOpCost(Opcode, Ty,
Alignment, AS, Ctx.CostKind,
3580 return Cost += Ctx.TTI.getShuffleCost(
3590 auto &Builder = State.Builder;
3591 Value *Mask =
nullptr;
3592 if (
auto *VPMask =
getMask()) {
3595 Mask = State.get(VPMask);
3597 Mask = Builder.CreateVectorReverse(Mask,
"reverse");
3603 NewLI = Builder.CreateMaskedGather(DataTy, Addr,
Alignment, Mask,
nullptr,
3604 "wide.masked.gather");
3607 Builder.CreateMaskedLoad(DataTy, Addr,
Alignment, Mask,
3610 NewLI = Builder.CreateAlignedLoad(DataTy, Addr,
Alignment,
"wide.load");
3614 NewLI = Builder.CreateVectorReverse(NewLI,
"reverse");
3615 State.set(
this, NewLI);
3618#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3621 O << Indent <<
"WIDEN ";
3633 Value *AllTrueMask =
3634 Builder.CreateVectorSplat(ValTy->getElementCount(), Builder.getTrue());
3635 return Builder.CreateIntrinsic(ValTy, Intrinsic::experimental_vp_reverse,
3636 {Operand, AllTrueMask, EVL},
nullptr, Name);
3644 auto &Builder = State.Builder;
3648 Value *Mask =
nullptr;
3650 Mask = State.get(VPMask);
3654 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3659 Builder.CreateIntrinsic(DataTy, Intrinsic::vp_gather, {Addr, Mask, EVL},
3660 nullptr,
"wide.masked.gather");
3662 NewLI = Builder.CreateIntrinsic(DataTy, Intrinsic::vp_load,
3663 {Addr, Mask, EVL},
nullptr,
"vp.op.load");
3671 State.set(
this, Res);
3686 ->getAddressSpace();
3688 Instruction::Load, Ty,
Alignment, AS, Ctx.CostKind);
3692 return Cost + Ctx.TTI.getShuffleCost(
3697#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3700 O << Indent <<
"WIDEN ";
3711 auto &Builder = State.Builder;
3713 Value *Mask =
nullptr;
3714 if (
auto *VPMask =
getMask()) {
3717 Mask = State.get(VPMask);
3719 Mask = Builder.CreateVectorReverse(Mask,
"reverse");
3722 Value *StoredVal = State.get(StoredVPValue);
3726 StoredVal = Builder.CreateVectorReverse(StoredVal,
"reverse");
3733 NewSI = Builder.CreateMaskedScatter(StoredVal, Addr,
Alignment, Mask);
3735 NewSI = Builder.CreateMaskedStore(StoredVal, Addr,
Alignment, Mask);
3737 NewSI = Builder.CreateAlignedStore(StoredVal, Addr,
Alignment);
3741#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3744 O << Indent <<
"WIDEN store ";
3753 auto &Builder = State.Builder;
3756 Value *StoredVal = State.get(StoredValue);
3760 Value *Mask =
nullptr;
3762 Mask = State.get(VPMask);
3766 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3769 if (CreateScatter) {
3771 Intrinsic::vp_scatter,
3772 {StoredVal, Addr, Mask, EVL});
3775 Intrinsic::vp_store,
3776 {StoredVal, Addr, Mask, EVL});
3795 ->getAddressSpace();
3797 Instruction::Store, Ty,
Alignment, AS, Ctx.CostKind);
3801 return Cost + Ctx.TTI.getShuffleCost(
3806#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3809 O << Indent <<
"WIDEN vp.store ";
3817 auto VF = DstVTy->getElementCount();
3819 assert(VF == SrcVecTy->getElementCount() &&
"Vector dimensions do not match");
3820 Type *SrcElemTy = SrcVecTy->getElementType();
3821 Type *DstElemTy = DstVTy->getElementType();
3822 assert((
DL.getTypeSizeInBits(SrcElemTy) ==
DL.getTypeSizeInBits(DstElemTy)) &&
3823 "Vector elements must have same size");
3827 return Builder.CreateBitOrPointerCast(V, DstVTy);
3834 "Only one type should be a pointer type");
3836 "Only one type should be a floating point type");
3840 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3841 return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
3847 const Twine &Name) {
3848 unsigned Factor = Vals.
size();
3849 assert(Factor > 1 &&
"Tried to interleave invalid number of vectors");
3853 for (
Value *Val : Vals)
3854 assert(Val->getType() == VecTy &&
"Tried to interleave mismatched types");
3859 if (VecTy->isScalableTy()) {
3860 assert(Factor <= 8 &&
"Unsupported interleave factor for scalable vectors");
3861 return Builder.CreateVectorInterleave(Vals, Name);
3868 const unsigned NumElts = VecTy->getElementCount().getFixedValue();
3869 return Builder.CreateShuffleVector(
3902 assert(!State.Lane &&
"Interleave group being replicated.");
3904 "Masking gaps for scalable vectors is not yet supported.");
3910 unsigned InterleaveFactor = Group->
getFactor();
3917 auto CreateGroupMask = [&BlockInMask, &State,
3918 &InterleaveFactor](
Value *MaskForGaps) ->
Value * {
3919 if (State.VF.isScalable()) {
3920 assert(!MaskForGaps &&
"Interleaved groups with gaps are not supported.");
3921 assert(InterleaveFactor <= 8 &&
3922 "Unsupported deinterleave factor for scalable vectors");
3923 auto *ResBlockInMask = State.get(BlockInMask);
3931 Value *ResBlockInMask = State.get(BlockInMask);
3932 Value *ShuffledMask = State.Builder.CreateShuffleVector(
3935 "interleaved.mask");
3936 return MaskForGaps ? State.Builder.CreateBinOp(Instruction::And,
3937 ShuffledMask, MaskForGaps)
3941 const DataLayout &DL = Instr->getDataLayout();
3944 Value *MaskForGaps =
nullptr;
3948 assert(MaskForGaps &&
"Mask for Gaps is required but it is null");
3952 if (BlockInMask || MaskForGaps) {
3953 Value *GroupMask = CreateGroupMask(MaskForGaps);
3955 NewLoad = State.Builder.CreateMaskedLoad(VecTy, ResAddr,
3957 PoisonVec,
"wide.masked.vec");
3959 NewLoad = State.Builder.CreateAlignedLoad(VecTy, ResAddr,
3966 if (VecTy->isScalableTy()) {
3969 assert(InterleaveFactor <= 8 &&
3970 "Unsupported deinterleave factor for scalable vectors");
3971 NewLoad = State.Builder.CreateIntrinsic(
3974 nullptr,
"strided.vec");
3977 auto CreateStridedVector = [&InterleaveFactor, &State,
3978 &NewLoad](
unsigned Index) ->
Value * {
3979 assert(Index < InterleaveFactor &&
"Illegal group index");
3980 if (State.VF.isScalable())
3981 return State.Builder.CreateExtractValue(NewLoad, Index);
3987 return State.Builder.CreateShuffleVector(NewLoad, StrideMask,
3991 for (
unsigned I = 0, J = 0;
I < InterleaveFactor; ++
I) {
3998 Value *StridedVec = CreateStridedVector(
I);
4001 if (Member->getType() != ScalarTy) {
4008 StridedVec = State.Builder.CreateVectorReverse(StridedVec,
"reverse");
4010 State.set(VPDefs[J], StridedVec);
4020 Value *MaskForGaps =
4023 "Mismatch between NeedsMaskForGaps and MaskForGaps");
4027 unsigned StoredIdx = 0;
4028 for (
unsigned i = 0; i < InterleaveFactor; i++) {
4030 "Fail to get a member from an interleaved store group");
4040 Value *StoredVec = State.get(StoredValues[StoredIdx]);
4044 StoredVec = State.Builder.CreateVectorReverse(StoredVec,
"reverse");
4048 if (StoredVec->
getType() != SubVT)
4057 if (BlockInMask || MaskForGaps) {
4058 Value *GroupMask = CreateGroupMask(MaskForGaps);
4059 NewStoreInstr = State.Builder.CreateMaskedStore(
4060 IVec, ResAddr, Group->
getAlign(), GroupMask);
4063 State.Builder.CreateAlignedStore(IVec, ResAddr, Group->
getAlign());
4070#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4074 O << Indent <<
"INTERLEAVE-GROUP with factor " << IG->getFactor() <<
" at ";
4075 IG->getInsertPos()->printAsOperand(O,
false);
4085 for (
unsigned i = 0; i < IG->getFactor(); ++i) {
4086 if (!IG->getMember(i))
4089 O <<
"\n" << Indent <<
" store ";
4091 O <<
" to index " << i;
4093 O <<
"\n" << Indent <<
" ";
4095 O <<
" = load from index " << i;
4103 assert(!State.Lane &&
"Interleave group being replicated.");
4104 assert(State.VF.isScalable() &&
4105 "Only support scalable VF for EVL tail-folding.");
4107 "Masking gaps for scalable vectors is not yet supported.");
4113 unsigned InterleaveFactor = Group->
getFactor();
4114 assert(InterleaveFactor <= 8 &&
4115 "Unsupported deinterleave/interleave factor for scalable vectors");
4122 Value *InterleaveEVL = State.Builder.CreateMul(
4123 EVL, ConstantInt::get(EVL->
getType(), InterleaveFactor),
"interleave.evl",
4127 Value *GroupMask =
nullptr;
4133 State.Builder.CreateVectorSplat(WideVF, State.Builder.getTrue());
4138 CallInst *NewLoad = State.Builder.CreateIntrinsic(
4139 VecTy, Intrinsic::vp_load, {ResAddr, GroupMask, InterleaveEVL},
nullptr,
4150 NewLoad = State.Builder.CreateIntrinsic(
4153 nullptr,
"strided.vec");
4155 const DataLayout &DL = Instr->getDataLayout();
4156 for (
unsigned I = 0, J = 0;
I < InterleaveFactor; ++
I) {
4162 Value *StridedVec = State.Builder.CreateExtractValue(NewLoad,
I);
4164 if (Member->getType() != ScalarTy) {
4182 const DataLayout &DL = Instr->getDataLayout();
4183 for (
unsigned I = 0, StoredIdx = 0;
I < InterleaveFactor;
I++) {
4191 Value *StoredVec = State.get(StoredValues[StoredIdx]);
4193 if (StoredVec->
getType() != SubVT)
4203 State.Builder.CreateIntrinsic(
Type::getVoidTy(Ctx), Intrinsic::vp_store,
4204 {IVec, ResAddr, GroupMask, InterleaveEVL});
4213#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4217 O << Indent <<
"INTERLEAVE-GROUP with factor " << IG->getFactor() <<
" at ";
4218 IG->getInsertPos()->printAsOperand(O,
false);
4229 for (
unsigned i = 0; i < IG->getFactor(); ++i) {
4230 if (!IG->getMember(i))
4233 O <<
"\n" << Indent <<
" vp.store ";
4235 O <<
" to index " << i;
4237 O <<
"\n" << Indent <<
" ";
4239 O <<
" = vp.load from index " << i;
4250 unsigned InsertPosIdx = 0;
4251 for (
unsigned Idx = 0; IG->getFactor(); ++Idx)
4252 if (
auto *Member = IG->getMember(Idx)) {
4253 if (Member == InsertPos)
4257 Type *ValTy = Ctx.Types.inferScalarType(
4262 ->getAddressSpace();
4264 unsigned InterleaveFactor = IG->getFactor();
4269 for (
unsigned IF = 0; IF < InterleaveFactor; IF++)
4270 if (IG->getMember(IF))
4275 InsertPos->
getOpcode(), WideVecTy, IG->getFactor(), Indices,
4276 IG->getAlign(), AS, Ctx.CostKind,
getMask(), NeedsMaskForGaps);
4278 if (!IG->isReverse())
4281 return Cost + IG->getNumMembers() *
4283 VectorTy, VectorTy, {}, Ctx.CostKind,
4287#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4290 O << Indent <<
"EMIT ";
4292 O <<
" = CANONICAL-INDUCTION ";
4298 return IsScalarAfterVectorization &&
4302#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4306 "unexpected number of operands");
4307 O << Indent <<
"EMIT ";
4309 O <<
" = WIDEN-POINTER-INDUCTION ";
4325 O << Indent <<
"EMIT ";
4327 O <<
" = EXPAND SCEV " << *Expr;
4334 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
4338 : Builder.CreateVectorSplat(VF, CanonicalIV,
"broadcast");
4341 VStep = Builder.CreateVectorSplat(VF, VStep);
4343 Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->
getType()));
4345 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep,
"vec.iv");
4346 State.set(
this, CanonicalVectorIV);
4349#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4352 O << Indent <<
"EMIT ";
4354 O <<
" = WIDEN-CANONICAL-INDUCTION ";
4360 auto &Builder = State.Builder;
4364 Type *VecTy = State.VF.isScalar()
4365 ? VectorInit->getType()
4369 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4370 if (State.VF.isVector()) {
4372 auto *One = ConstantInt::get(IdxTy, 1);
4375 auto *RuntimeVF =
getRuntimeVF(Builder, IdxTy, State.VF);
4376 auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4377 VectorInit = Builder.CreateInsertElement(
4383 Phi->insertBefore(State.CFG.PrevBB->getFirstInsertionPt());
4384 Phi->addIncoming(VectorInit, VectorPH);
4385 State.set(
this, Phi);
4392 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
4397#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4400 O << Indent <<
"FIRST-ORDER-RECURRENCE-PHI ";
4417 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4418 bool ScalarPHI = State.VF.isScalar() || IsInLoop;
4419 Value *StartV = State.get(StartVPV, ScalarPHI);
4423 assert(State.CurrentParentLoop->getHeader() == HeaderBB &&
4424 "recipe must be in the vector loop header");
4427 State.set(
this, Phi, IsInLoop);
4429 Phi->addIncoming(StartV, VectorPH);
4432#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4435 O << Indent <<
"WIDEN-REDUCTION-PHI ";
4440 if (VFScaleFactor != 1)
4441 O <<
" (VF scaled by 1/" << VFScaleFactor <<
")";
4448 Instruction *VecPhi = State.Builder.CreatePHI(VecTy, 2, Name);
4449 State.set(
this, VecPhi);
4452#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4455 O << Indent <<
"WIDEN-PHI ";
4467 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4470 State.Builder.CreatePHI(StartMask->
getType(), 2,
"active.lane.mask");
4471 Phi->addIncoming(StartMask, VectorPH);
4472 State.set(
this, Phi);
4475#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4478 O << Indent <<
"ACTIVE-LANE-MASK-PHI ";
4486#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4489 O << Indent <<
"EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI ";
static SDValue Widen(SelectionDAG *CurDAG, SDValue N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static MCDisassembler::DecodeStatus addOperand(MCInst &Inst, const MCOperand &Opnd)
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
This file provides a LoopVectorizationPlanner class.
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static bool isOrdered(const Instruction *I)
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
This file contains the declarations of different VPlan-related auxiliary helpers.
static Instruction * createReverseEVL(IRBuilderBase &Builder, Value *Operand, Value *EVL, const Twine &Name)
Use all-true mask for reverse rather than actual mask, as it avoids a dependence w/o affecting the re...
static Value * interleaveVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vals, const Twine &Name)
Return a vector containing interleaved elements from multiple smaller input vectors.
static InstructionCost getCostForIntrinsics(Intrinsic::ID ID, ArrayRef< const VPValue * > Operands, const VPRecipeWithIRFlags &R, ElementCount VF, VPCostContext &Ctx)
Compute the cost for the intrinsic ID with Operands, produced by R.
static Value * createBitOrPointerCast(IRBuilderBase &Builder, Value *V, VectorType *DstVTy, const DataLayout &DL)
static Type * getGEPIndexTy(bool IsScalable, bool IsReverse, bool IsUnitStride, unsigned CurrentPart, IRBuilderBase &Builder)
SmallVector< Value *, 2 > VectorParts
static bool isUsedByLoadStoreAddress(const VPUser *V)
Returns true if V is used as part of the address of another load or store.
static void scalarizeInstruction(const Instruction *Instr, VPReplicateRecipe *RepRecipe, const VPLane &Lane, VPTransformState &State)
A helper function to scalarize a single Instruction in the innermost loop.
static Constant * getSignedIntOrFpConstant(Type *Ty, int64_t C)
A helper function that returns an integer or floating-point constant with value C.
static BranchInst * createCondBranch(Value *Cond, VPBasicBlock *VPBB, VPTransformState &State)
Create a conditional branch using Cond branching to the successors of VPBB.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
This file contains the declarations of the Vectorization Plan base classes:
static const uint32_t IV[8]
Class for arbitrary precision integers.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
static LLVM_ABI Attribute getWithAlignment(LLVMContext &Context, Align Alignment)
Return a uniquified Attribute object that has the specific alignment set.
LLVM Basic Block Representation.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Conditional or Unconditional Branch instruction.
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Adds the attribute to the indicated argument.
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
static LLVM_ABI StringRef getPredicateName(Predicate P)
This is the shared class of boolean and integer constants.
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
This is an important base class in LLVM.
A parsed version of the target data layout string in and methods for querying it.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
constexpr bool isScalar() const
Exactly one element.
Convenience struct for specifying and reasoning about fast-math flags.
LLVM_ABI void print(raw_ostream &O) const
Print fast-math flags to O.
void setAllowContract(bool B=true)
bool noSignedZeros() const
void setAllowReciprocal(bool B=true)
bool allowReciprocal() const
void setNoSignedZeros(bool B=true)
bool allowReassoc() const
Flag queries.
void setNoNaNs(bool B=true)
void setAllowReassoc(bool B=true)
Flag setters.
void setApproxFunc(bool B=true)
void setNoInfs(bool B=true)
bool allowContract() const
Class to represent function types.
Type * getParamType(unsigned i) const
Parameter type accessors.
bool willReturn() const
Determine if the function will return.
bool doesNotThrow() const
Determine if the function cannot unwind.
Type * getReturnType() const
Returns the type of the ret val.
Common base class shared among various IRBuilders.
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
Value * CreateInsertValue(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &Name="")
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
LLVM_ABI Value * CreateVectorSplice(Value *V1, Value *V2, int64_t Imm, const Twine &Name="")
Return a vector splice intrinsic if using scalable vectors, otherwise return a shufflevector.
LLVM_ABI Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Value * CreateFreeze(Value *V, const Twine &Name="")
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
IntegerType * getInt64Ty()
Fetch the type representing a 64-bit integer.
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
ConstantInt * getInt64(uint64_t C)
Get a constant 64-bit value.
Value * CreateLogicalAnd(Value *Cond1, Value *Cond2, const Twine &Name="", Instruction *MDFrom=nullptr)
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Value * CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateNot(Value *V, const Twine &Name="")
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateCountTrailingZeroElems(Type *ResTy, Value *Mask, bool ZeroIsPoison=true, const Twine &Name="")
Create a call to llvm.experimental_cttz_elts.
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
LLVMContext & getContext() const
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
ConstantInt * getFalse()
Get the constant value for i1 false.
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateICmpUGE(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
static InstructionCost getInvalid(CostType Val=0)
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
void addMetadata(InstTy *NewInst) const
Add metadata (e.g.
This is an important class for using LLVM in a threaded context.
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
std::pair< MDNode *, MDNode * > getNoAliasMetadataFor(const Instruction *OrigInst) const
Returns a pair containing the alias_scope and noalias metadata nodes for OrigInst,...
Represents a single loop in the control flow graph.
A Module instance is used to store all the information related to an LLVM module.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
static bool isSignedRecurrenceKind(RecurKind Kind)
Returns true if recurrece kind is a signed redux kind.
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
unsigned getOpcode() const
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindLastIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
This class represents an analyzed expression in the program.
The main scalar evolution driver.
This class represents the LLVM 'select' instruction.
This class provides computation of slot numbers for LLVM Assembly writing.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
bool isStructTy() const
True if this is an instance of StructType.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
bool isVoidTy() const
Return true if this is 'void'.
value_op_iterator value_op_end()
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
value_op_iterator value_op_begin()
void execute(VPTransformState &State) override
Generate the active lane mask phi of the vector loop.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
RecipeListTy & getRecipeList()
Returns a reference to the list of recipes.
void insert(VPRecipeBase *Recipe, iterator InsertPt)
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
VPValue * getIncomingValue(unsigned Idx) const
Return incoming value number Idx.
unsigned getNumIncomingValues() const
Return the number of incoming values, taking into account when normalized the first incoming value wi...
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
const VPBlocksTy & getPredecessors() const
void printAsOperand(raw_ostream &OS, bool PrintType=false) const
const VPBlocksTy & getSuccessors() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPBranchOnMaskRecipe.
void execute(VPTransformState &State) override
Generate the extraction of the appropriate bit from the block mask and the conditional branch.
VPlan-based builder utility analogous to IRBuilder.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
This class augments a recipe with a set of VPValues defined by the recipe.
void dump() const
Dump the VPDef to stderr (for debugging).
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
ArrayRef< VPValue * > definedValues()
Returns an ArrayRef of the values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
VPValue * getVPValue(unsigned I)
Returns the VPValue with index I defined by the VPDef.
unsigned getVPDefID() const
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStepValue() const
VPValue * getStartValue() const
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void decompose()
Insert the recipes of the expression back into the VPlan, directly before the current recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool isSingleScalar() const
Returns true if the result of this VPExpressionRecipe is a single-scalar.
bool mayHaveSideEffects() const
Returns true if this expression contains recipes that may have side effects.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
bool mayReadOrWriteMemory() const
Returns true if this expression contains recipes that may read from or write to memory.
void execute(VPTransformState &State) override
Produce a vectorized histogram operation.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPHistogramRecipe.
VPValue * getMask() const
Return the mask operand if one was provided, or a null pointer if all lanes should be executed uncond...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Class to record and manage LLVM IR flags.
bool flagsValidForOpcode(unsigned Opcode) const
Returns true if the set flags are valid for Opcode.
CmpInst::Predicate CmpPredicate
void printFlags(raw_ostream &O) const
bool hasFastMathFlags() const
Returns true if the recipe has fast-math flags.
LLVM_ABI_FOR_TEST FastMathFlags getFastMathFlags() const
CmpInst::Predicate getPredicate() const
bool hasNoSignedWrap() const
void intersectFlags(const VPIRFlags &Other)
Only keep flags also present in Other.
GEPNoWrapFlags getGEPNoWrapFlags() const
bool hasPredicate() const
Returns true if the recipe has a comparison predicate.
DisjointFlagsTy DisjointFlags
bool hasNoUnsignedWrap() const
NonNegFlagsTy NonNegFlags
void applyFlags(Instruction &I) const
Apply the IR flags to I.
Instruction & getInstruction() const
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void extractLastLaneOfFirstOperand(VPBuilder &Builder)
Update the recipes first operand to the last lane of the operand using Builder.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPIRInstruction.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPIRInstruction(Instruction &I)
VPIRInstruction::create() should be used to create VPIRInstructions, as subclasses may need to be cre...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the instruction.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPInstruction.
VPInstruction(unsigned Opcode, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
bool doesGeneratePerAllLanes() const
Returns true if this VPInstruction generates scalar values for all lanes.
@ ExtractLane
Extracts a single lane (first operand) from a set of vector operands.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ WideIVStep
Scale the first operand (vector step) by the second operand (scalar-step).
@ ExtractPenultimateElement
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ Unpack
Extracts all lanes from its (non-scalable) vector operand.
@ FirstOrderRecurrenceSplice
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
@ BuildVector
Creates a fixed-width vector containing all operands.
@ BuildStructVector
Given operands of (the same) struct type, creates a struct of fixed- width vectors each containing a ...
@ VScale
Returns the value for vscale.
@ CanonicalIVIncrementForPart
@ CalculateTripCountMinusVF
bool opcodeMayReadOrWriteFromMemory() const
Returns true if the underlying opcode may read from or write to memory.
LLVM_DUMP_METHOD void dump() const
Print the VPInstruction to dbgs() (for debugging).
StringRef getName() const
Returns the symbolic name assigned to the VPInstruction.
unsigned getOpcode() const
bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first lane of operand Op.
bool isVectorToScalar() const
Returns true if this VPInstruction produces a scalar value from a vector, e.g.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the VPInstruction to O.
bool isSingleScalar() const
Returns true if this VPInstruction's operands are single scalars and the result is also a single scal...
void execute(VPTransformState &State) override
Generate the instruction.
bool usesFirstPartOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first part of operand Op.
bool needsMaskForGaps() const
Return true if the access needs a mask because of the gaps.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this recipe.
Instruction * getInsertPos() const
const InterleaveGroup< Instruction > * getInterleaveGroup() const
VPValue * getMask() const
Return the mask used by this recipe.
ArrayRef< VPValue * > getStoredValues() const
Return the VPValues stored by this interleave group.
VPValue * getAddr() const
Return the address accessed by this recipe.
VPValue * getEVL() const
The VPValue of the explicit vector length.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
static VPLane getLastLaneForVF(const ElementCount &VF)
static VPLane getLaneFromEnd(const ElementCount &VF, unsigned Offset)
static VPLane getFirstLane()
void execute(VPTransformState &State) override
Generate the reduction in the loop.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPPartialReductionRecipe.
unsigned getOpcode() const
Get the binary op's opcode.
virtual const VPRecipeBase * getAsRecipe() const =0
Return a VPRecipeBase* to the current object.
virtual unsigned getNumIncoming() const
Returns the number of incoming values, also number of incoming blocks.
void removeIncomingValueFor(VPBlockBase *IncomingBlock) const
Removes the incoming value for IncomingBlock, which must be a predecessor.
const VPBasicBlock * getIncomingBlock(unsigned Idx) const
Returns the incoming block with index Idx.
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPValue * getIncomingValue(unsigned Idx) const
Returns the incoming VPValue with index Idx.
void printPhiOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the recipe.
void execute(VPTransformState &State) override
Generates phi nodes for live-outs (from a replicate region) as needed to retain SSA form.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
bool mayReadFromMemory() const
Returns true if the recipe may read from memory.
bool mayHaveSideEffects() const
Returns true if the recipe may have side-effects.
VPRegionBlock * getRegion()
bool isPhi() const
Returns true for PHI-like recipes.
bool mayWriteToMemory() const
Returns true if the recipe may write to memory.
virtual InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this recipe, taking into account if the cost computation should be skipped and the...
bool isScalarCast() const
Return true if the recipe is a scalar cast.
void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
void moveAfter(VPRecipeBase *MovePos)
Unlink this recipe from its current VPBasicBlock and insert it into the VPBasicBlock that MovePos liv...
VPRecipeBase(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
void execute(VPTransformState &State) override
Generate the reduction in the loop.
VPValue * getEVL() const
The VPValue of the explicit vector length.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool isConditional() const
Return true if the in-loop reduction is conditional.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of VPReductionRecipe.
VPValue * getVecOp() const
The VPValue of the vector value to be reduced.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getCondOp() const
The VPValue of the condition for the block.
RecurKind getRecurrenceKind() const
Return the recurrence kind for the in-loop reduction.
VPValue * getChainOp() const
The VPValue of the scalar Chain being accumulated.
void execute(VPTransformState &State) override
Generate the reduction in the loop.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
bool isReplicator() const
An indicator whether this region is to generate multiple replicated instances of output IR correspond...
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate replicas of the desired Ingredient.
bool isSingleScalar() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPReplicateRecipe.
unsigned getOpcode() const
bool shouldPack() const
Returns true if the recipe is used by a widened recipe via an intervening VPPredInstPHIRecipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStepValue() const
void execute(VPTransformState &State) override
Generate the scalarized versions of the phi node as needed by their users.
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
LLVM_DUMP_METHOD void dump() const
Print this VPSingleDefRecipe to dbgs() (for debugging).
VPSingleDefRecipe(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
This class can be used to assign names to VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
Helper to access the operand that contains the unroll part for this recipe after unrolling.
VPValue * getUnrollPartOperand(const VPUser &U) const
Return the VPValue operand containing the unroll part or null if there is no such operand.
unsigned getUnrollPart(const VPUser &U) const
Return the unroll part.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the operands to O.
void setOperand(unsigned I, VPValue *New)
unsigned getNumOperands() const
operand_iterator op_begin()
VPValue * getOperand(unsigned N) const
virtual bool usesFirstLaneOnly(const VPValue *Op) const
Returns true if the VPUser only uses the first lane of operand Op.
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
bool isDefinedOutsideLoopRegions() const
Returns true if the VPValue is defined outside any loop.
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
friend class VPExpressionRecipe
void printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const
bool hasMoreThanOneUniqueUser() const
Returns true if the value has more than one unique user.
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
VPValue(const unsigned char SC, Value *UV=nullptr, VPDef *Def=nullptr)
void replaceAllUsesWith(VPValue *New)
user_iterator user_begin()
unsigned getNumUsers() const
bool isLiveIn() const
Returns true if this VPValue is a live-in, i.e. defined outside the VPlan.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getSourceElementType() const
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Function * getCalledScalarFunction() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCallRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the call instruction.
void execute(VPTransformState &State) override
Generate a canonical vector induction variable of the vector loop, with start = {<Part*VF,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getResultType() const
Returns the result type of the cast.
void execute(VPTransformState &State) override
Produce widened copies of the cast.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCastRecipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the gep nodes.
Type * getSourceElementType() const
VPValue * getStepValue()
Returns the step value of the induction.
TruncInst * getTruncInst()
Returns the first defined value as TruncInst, if it is one or nullptr otherwise.
Type * getScalarType() const
Returns the scalar type of the induction.
bool isCanonical() const
Returns true if the induction is canonical, i.e.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Intrinsic::ID getVectorIntrinsicID() const
Return the ID of the intrinsic.
StringRef getIntrinsicName() const
Return to name of the intrinsic as string.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the VPUser only uses the first lane of operand Op.
Type * getResultType() const
Return the scalar return type of the intrinsic.
void execute(VPTransformState &State) override
Produce a widened version of the vector intrinsic.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this vector intrinsic.
bool IsMasked
Whether the memory access is masked.
bool Reverse
Whether the consecutive accessed addresses are in reverse order.
bool isConsecutive() const
Return whether the loaded-from / stored-to addresses are consecutive.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
bool Consecutive
Whether the accessed addresses are consecutive.
VPValue * getMask() const
Return the mask used by this recipe.
Align Alignment
Alignment information for this memory access.
VPValue * getAddr() const
Return the address accessed by this recipe.
bool isReverse() const
Return whether the consecutive loaded/stored addresses are in reverse order.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool onlyScalarsGenerated(bool IsScalable)
Returns true if only scalar values will be generated.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenRecipe.
void execute(VPTransformState &State) override
Produce a widened instruction using the opcode and operands of the recipe, processing State....
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
void mutateType(Type *Ty)
Mutate the type of this Value to be of the specified type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
const ParentTy * getParent() const
self_iterator getIterator()
typename base_list_type::iterator iterator
iterator erase(iterator where)
pointer remove(iterator &IT)
This class implements an extremely fast bulk output stream that can only output to a stream.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
LLVM_ABI Intrinsic::ID getDeinterleaveIntrinsicID(unsigned Factor)
Returns the corresponding llvm.vector.deinterleaveN intrinsic for factor N.
LLVM_ABI StringRef getBaseName(ID id)
Return the LLVM name for an intrinsic, without encoded types for overloading, such as "llvm....
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
bool match(Val *V, const Pattern &P)
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
GEPLikeRecipe_match< Op0_t, Op1_t > m_GetElementPtr(const Op0_t &Op0, const Op1_t &Op1)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
NodeAddr< DefNode * > Def
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
bool onlyFirstPartUsed(const VPValue *Def)
Returns true if only the first part of Def is used.
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
bool onlyScalarValuesUsed(const VPValue *Def)
Returns true if only scalar values of Def are used by all users.
const SCEV * getSCEVExprForVPValue(const VPValue *V, ScalarEvolution &SE, const Loop *L=nullptr)
Return the SCEV expression for V.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI Value * createSimpleReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind)
Create a reduction of the given vector.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
LLVM_ABI Value * createFindLastIVReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind, Value *Start, Value *Sentinel)
Create a reduction of the given vector Src for a reduction of the kind RecurKind::FindLastIV.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
void interleaveComma(const Container &c, StreamT &os, UnaryFunctor each_fn)
auto cast_or_null(const Y &Val)
LLVM_ABI Value * concatenateVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vecs)
Concatenate a list of vectors.
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
bool isa_and_nonnull(const Y &Val)
LLVM_ABI Value * createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, Value *Right)
Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Constant * createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, const InterleaveGroup< Instruction > &Group)
Create a mask that filters the members of an interleave group where there are gaps.
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
auto reverse(ContainerTy &&C)
LLVM_ABI llvm::SmallVector< int, 16 > createReplicatedMask(unsigned ReplicationFactor, unsigned VF)
Create a mask with replicated elements.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
bool canConstantBeExtended(const APInt *C, Type *NarrowType, TTI::PartialReductionExtendKind ExtKind)
Check if a constant CI can be safely treated as having been extended from a narrower type with the gi...
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
RecurKind
These are the kinds of recurrences that we support.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Mul
Product of integers.
@ AnyOf
AnyOf reduction with select(cmp(),x,y) where one of (x,y) is loop invariant, and both x and y are int...
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ Sub
Subtraction of integers.
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
DWARFExpression::Operation Op
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
LLVM_ABI Value * createOrderedReduction(IRBuilderBase &B, RecurKind RdxKind, Value *Src, Value *Start)
Create an ordered reduction intrinsic using the given recurrence kind RdxKind.
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
unsigned getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind)
A helper function that returns how much we should divide the cost of a predicated block by.
@ Increment
Incrementally increasing token ID.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
LLVM_ABI Value * createAnyOfReduction(IRBuilderBase &B, Value *Src, Value *InitVal, PHINode *OrigPhi)
Create a reduction of the given vector Src for a reduction of kind RecurKind::AnyOf.
LLVM_ABI bool isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic is overloaded on the type of the operand at index OpdI...
This struct is a compact representation of a valid (non-zero power of two) alignment.
Struct to hold various analysis needed for cost computations.
void execute(VPTransformState &State) override
Generate the phi nodes.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this first-order recurrence phi recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
An overlay for VPIRInstructions wrapping PHI nodes enabling convenient use cast/dyn_cast/isa and exec...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the instruction.
A pure-virtual common base class for recipes defining a single VPValue and using IR flags.
InstructionCost getCostForRecipeWithOpcode(unsigned Opcode, ElementCount VF, VPCostContext &Ctx) const
Compute the cost for this recipe for VF, using Opcode and Ctx.
VPRecipeWithIRFlags(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
void execute(VPTransformState &State) override
Generate the wide load or gather.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenLoadEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate a wide load or gather.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getCond() const
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenSelectRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the select instruction.
VPValue * getStoredValue() const
Return the address accessed by this recipe.
void execute(VPTransformState &State) override
Generate the wide store or scatter.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenStoreEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
void execute(VPTransformState &State) override
Generate a wide store or scatter.
VPValue * getStoredValue() const
Return the value stored by this recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.