31#include "llvm/Config/config.h"
45#include "llvm/IR/IntrinsicsAArch64.h"
46#include "llvm/IR/IntrinsicsAMDGPU.h"
47#include "llvm/IR/IntrinsicsARM.h"
48#include "llvm/IR/IntrinsicsNVPTX.h"
49#include "llvm/IR/IntrinsicsWebAssembly.h"
50#include "llvm/IR/IntrinsicsX86.h"
68 "disable-fp-call-folding",
69 cl::desc(
"Disable constant-folding of FP intrinsics and libcalls."),
84 unsigned BitShift =
DL.getTypeSizeInBits(SrcEltTy);
85 for (
unsigned i = 0; i != NumSrcElts; ++i) {
87 if (
DL.isLittleEndian())
88 Element =
C->getAggregateElement(NumSrcElts - i - 1);
90 Element =
C->getAggregateElement(i);
102 Result |= ElementCI->getValue().zext(
Result.getBitWidth());
113 "Invalid constantexpr bitcast!");
123 Type *SrcEltTy = VTy->getElementType();
136 if (
Constant *CE = foldConstVectorToAPInt(Result, DestTy,
C,
137 SrcEltTy, NumSrcElts,
DL))
141 return ConstantInt::get(DestTy, Result);
174 if (NumDstElt == NumSrcElt)
178 Type *DstEltTy = DestVTy->getElementType();
212 "Constant folding cannot fail for plain fp->int bitcast!");
219 bool isLittleEndian =
DL.isLittleEndian();
222 if (NumDstElt < NumSrcElt) {
225 unsigned Ratio = NumSrcElt/NumDstElt;
228 for (
unsigned i = 0; i != NumDstElt; ++i) {
231 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
232 for (
unsigned j = 0;
j != Ratio; ++
j) {
233 Constant *Src =
C->getAggregateElement(SrcElt++);
245 assert(Src &&
"Constant folding cannot fail on plain integers");
249 Instruction::Shl, Src, ConstantInt::get(Src->getType(), ShiftAmt),
251 assert(Src &&
"Constant folding cannot fail on plain integers");
253 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
257 assert(Elt &&
"Constant folding cannot fail on plain integers");
265 unsigned Ratio = NumDstElt/NumSrcElt;
266 unsigned DstBitSize =
DL.getTypeSizeInBits(DstEltTy);
269 for (
unsigned i = 0; i != NumSrcElt; ++i) {
270 auto *Element =
C->getAggregateElement(i);
285 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
286 for (
unsigned j = 0;
j != Ratio; ++
j) {
289 APInt Elt = Src->getValue().lshr(ShiftAmt);
290 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
293 Result.push_back(ConstantInt::get(DstEltTy, Elt.
trunc(DstBitSize)));
319 *DSOEquiv = FoundDSOEquiv;
320 GV = FoundDSOEquiv->getGlobalValue();
328 if (!CE)
return false;
331 if (CE->getOpcode() == Instruction::PtrToInt ||
332 CE->getOpcode() == Instruction::PtrToAddr ||
333 CE->getOpcode() == Instruction::BitCast)
342 unsigned BitWidth =
DL.getIndexTypeSizeInBits(
GEP->getType());
351 if (!
GEP->accumulateConstantOffset(
DL, TmpOffset))
361 Type *SrcTy =
C->getType();
365 TypeSize DestSize =
DL.getTypeSizeInBits(DestTy);
366 TypeSize SrcSize =
DL.getTypeSizeInBits(SrcTy);
378 if (SrcSize == DestSize &&
379 DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
385 Cast = Instruction::IntToPtr;
386 else if (SrcTy->isPointerTy() && DestTy->
isIntegerTy())
387 Cast = Instruction::PtrToInt;
395 if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
402 if (SrcTy->isStructTy()) {
408 ElemC =
C->getAggregateElement(Elem++);
409 }
while (ElemC &&
DL.getTypeSizeInBits(ElemC->
getType()).isZero());
415 if (!
DL.typeSizeEqualsStoreSize(VT->getElementType()))
418 C =
C->getAggregateElement(0u);
433 assert(ByteOffset <=
DL.getTypeAllocSize(
C->getType()) &&
434 "Out of range access");
437 if (ByteOffset >=
DL.getTypeStoreSize(
C->getType()))
446 if ((CI->getBitWidth() & 7) != 0)
448 const APInt &Val = CI->getValue();
449 unsigned IntBytes =
unsigned(CI->getBitWidth()/8);
451 for (
unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
452 unsigned n = ByteOffset;
453 if (!
DL.isLittleEndian())
454 n = IntBytes - n - 1;
462 if (CFP->getType()->isDoubleTy()) {
464 return ReadDataFromGlobal(
C, ByteOffset, CurPtr, BytesLeft,
DL);
466 if (CFP->getType()->isFloatTy()){
468 return ReadDataFromGlobal(
C, ByteOffset, CurPtr, BytesLeft,
DL);
470 if (CFP->getType()->isHalfTy()){
472 return ReadDataFromGlobal(
C, ByteOffset, CurPtr, BytesLeft,
DL);
481 ByteOffset -= CurEltOffset;
486 uint64_t EltSize =
DL.getTypeAllocSize(CS->getOperand(Index)->getType());
488 if (ByteOffset < EltSize &&
489 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
496 if (Index == CS->getType()->getNumElements())
502 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
506 CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
507 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
509 CurEltOffset = NextEltOffset;
519 NumElts = AT->getNumElements();
520 EltTy = AT->getElementType();
521 EltSize =
DL.getTypeAllocSize(EltTy);
527 if (!
DL.typeSizeEqualsStoreSize(EltTy))
530 EltSize =
DL.getTypeStoreSize(EltTy);
532 uint64_t Index = ByteOffset / EltSize;
535 for (; Index != NumElts; ++Index) {
536 if (!ReadDataFromGlobal(
C->getAggregateElement(Index),
Offset, CurPtr,
541 assert(BytesWritten <= EltSize &&
"Not indexing into this element?");
542 if (BytesWritten >= BytesLeft)
546 BytesLeft -= BytesWritten;
547 CurPtr += BytesWritten;
553 if (
CE->getOpcode() == Instruction::IntToPtr &&
554 CE->getOperand(0)->getType() ==
DL.getIntPtrType(
CE->getType())) {
555 return ReadDataFromGlobal(
CE->getOperand(0), ByteOffset, CurPtr,
583 DL.getTypeSizeInBits(LoadTy).getFixedValue());
604 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
605 if (BytesLoaded > 32 || BytesLoaded == 0)
609 if (
Offset <= -1 *
static_cast<int64_t
>(BytesLoaded))
613 TypeSize InitializerSize =
DL.getTypeAllocSize(
C->getType());
621 unsigned char RawBytes[32] = {0};
622 unsigned char *CurPtr = RawBytes;
623 unsigned BytesLeft = BytesLoaded;
632 if (!ReadDataFromGlobal(
C,
Offset, CurPtr, BytesLeft,
DL))
635 APInt ResultVal =
APInt(IntType->getBitWidth(), 0);
636 if (
DL.isLittleEndian()) {
637 ResultVal = RawBytes[BytesLoaded - 1];
638 for (
unsigned i = 1; i != BytesLoaded; ++i) {
640 ResultVal |= RawBytes[BytesLoaded - 1 - i];
643 ResultVal = RawBytes[0];
644 for (
unsigned i = 1; i != BytesLoaded; ++i) {
646 ResultVal |= RawBytes[i];
650 return ConstantInt::get(IntType->getContext(), ResultVal);
670 if (NBytes > UINT16_MAX)
678 unsigned char *CurPtr = RawBytes.
data();
680 if (!ReadDataFromGlobal(
Init,
Offset, CurPtr, NBytes,
DL))
698 if (!
Offset.isZero() || !Indices[0].isZero())
703 if (Index.isNegative() || Index.getActiveBits() >= 32)
706 C =
C->getAggregateElement(Index.getZExtValue());
732 if (
Offset.getSignificantBits() <= 64)
734 FoldReinterpretLoadFromConst(
C, Ty,
Offset.getSExtValue(),
DL))
751 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
781 if (!
DL.typeSizeEqualsStoreSize(
C->getType()))
783 if (
C->isNullValue() && !Ty->isX86_AMXTy())
785 if (
C->isAllOnesValue() &&
786 (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy()))
805 if (
Opc == Instruction::And) {
808 if ((Known1.
One | Known0.
Zero).isAllOnes()) {
812 if ((Known0.
One | Known1.
Zero).isAllOnes()) {
824 if (
Opc == Instruction::Sub) {
830 unsigned OpSize =
DL.getTypeSizeInBits(Op0->
getType());
847 std::optional<ConstantRange>
InRange,
849 Type *IntIdxTy =
DL.getIndexType(ResultTy);
854 for (
unsigned i = 1, e =
Ops.size(); i != e; ++i) {
857 SrcElemTy,
Ops.slice(1, i - 1)))) &&
858 Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
861 Ops[i]->getType()->isVectorTy() ? IntIdxTy : IntIdxScalarTy;
885 Type *SrcElemTy =
GEP->getSourceElementType();
890 if (
Constant *
C = CastGEPIndices(SrcElemTy,
Ops, ResTy,
GEP->getNoWrapFlags(),
891 GEP->getInRange(),
DL, TLI))
895 if (!
Ptr->getType()->isPointerTy())
898 Type *IntIdxTy =
DL.getIndexType(
Ptr->getType());
900 for (
unsigned i = 1, e =
Ops.size(); i != e; ++i)
904 unsigned BitWidth =
DL.getTypeSizeInBits(IntIdxTy);
907 DL.getIndexedOffsetInType(
911 std::optional<ConstantRange>
InRange =
GEP->getInRange();
917 bool Overflow =
false;
919 NW &=
GEP->getNoWrapFlags();
924 bool AllConstantInt =
true;
925 for (
Value *NestedOp : NestedOps)
927 AllConstantInt =
false;
934 if (
auto GEPRange =
GEP->getInRange()) {
935 auto AdjustedGEPRange = GEPRange->sextOrTrunc(
BitWidth).subtract(
Offset);
937 InRange ?
InRange->intersectWith(AdjustedGEPRange) : AdjustedGEPRange;
941 SrcElemTy =
GEP->getSourceElementType();
955 APInt BaseIntVal(
DL.getPointerTypeSizeInBits(
Ptr->getType()), 0);
957 if (
CE->getOpcode() == Instruction::IntToPtr) {
959 BaseIntVal =
Base->getValue().zextOrTrunc(BaseIntVal.getBitWidth());
963 if ((
Ptr->isNullValue() || BaseIntVal != 0) &&
964 !
DL.mustNotIntroduceIntToPtr(
Ptr->getType())) {
969 Constant *
C = ConstantInt::get(
Ptr->getContext(), BaseIntVal);
975 bool CanBeNull, CanBeFreed;
977 Ptr->getPointerDereferenceableBytes(
DL, CanBeNull, CanBeFreed);
978 if (DerefBytes != 0 && !CanBeNull &&
Offset.sle(DerefBytes))
989 ConstantInt::get(Ctx,
Offset), NW,
998Constant *ConstantFoldInstOperandsImpl(
const Value *InstOrCE,
unsigned Opcode,
1002 bool AllowNonDeterministic) {
1012 case Instruction::FAdd:
1013 case Instruction::FSub:
1014 case Instruction::FMul:
1015 case Instruction::FDiv:
1016 case Instruction::FRem:
1022 AllowNonDeterministic);
1032 Type *SrcElemTy =
GEP->getSourceElementType();
1040 GEP->getNoWrapFlags(),
1045 return CE->getWithOperands(
Ops);
1048 default:
return nullptr;
1049 case Instruction::ICmp:
1050 case Instruction::FCmp: {
1055 case Instruction::Freeze:
1057 case Instruction::Call:
1062 AllowNonDeterministic);
1065 case Instruction::Select:
1067 case Instruction::ExtractElement:
1069 case Instruction::ExtractValue:
1072 case Instruction::InsertElement:
1074 case Instruction::InsertValue:
1077 case Instruction::ShuffleVector:
1080 case Instruction::Load: {
1082 if (LI->isVolatile())
1105 for (
const Use &OldU :
C->operands()) {
1111 auto It = FoldedOps.
find(OldC);
1112 if (It == FoldedOps.
end()) {
1113 NewC = ConstantFoldConstantImpl(OldC,
DL, TLI, FoldedOps);
1114 FoldedOps.
insert({OldC, NewC});
1119 Ops.push_back(NewC);
1123 if (
Constant *Res = ConstantFoldInstOperandsImpl(
1124 CE,
CE->getOpcode(),
Ops,
DL, TLI,
true))
1155 C = ConstantFoldConstantImpl(
C,
DL, TLI, FoldedOps);
1158 if (CommonValue &&
C != CommonValue)
1169 if (!
all_of(
I->operands(), [](
const Use &U) { return isa<Constant>(U); }))
1174 for (
const Use &OpU :
I->operands()) {
1177 Op = ConstantFoldConstantImpl(
Op,
DL, TLI, FoldedOps);
1187 return ConstantFoldConstantImpl(
C,
DL, TLI, FoldedOps);
1194 bool AllowNonDeterministic) {
1195 return ConstantFoldInstOperandsImpl(
I,
I->getOpcode(),
Ops,
DL, TLI,
1196 AllowNonDeterministic);
1215 if (CE0->getOpcode() == Instruction::IntToPtr) {
1216 Type *IntPtrTy =
DL.getIntPtrType(CE0->getType());
1228 if (CE0->getOpcode() == Instruction::PtrToInt) {
1229 Type *IntPtrTy =
DL.getIntPtrType(CE0->getOperand(0)->getType());
1230 if (CE0->getType() == IntPtrTy) {
1239 if (CE0->getOpcode() == CE1->getOpcode()) {
1240 if (CE0->getOpcode() == Instruction::IntToPtr) {
1241 Type *IntPtrTy =
DL.getIntPtrType(CE0->getType());
1255 if (CE0->getOpcode() == Instruction::PtrToInt) {
1256 Type *IntPtrTy =
DL.getIntPtrType(CE0->getOperand(0)->getType());
1257 if (CE0->getType() == IntPtrTy &&
1258 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1260 Predicate, CE0->getOperand(0), CE1->getOperand(0),
DL, TLI);
1272 unsigned IndexWidth =
DL.getIndexTypeSizeInBits(Ops0->
getType());
1273 APInt Offset0(IndexWidth, 0);
1276 DL, Offset0, IsEqPred,
1279 APInt Offset1(IndexWidth, 0);
1281 DL, Offset1, IsEqPred,
1284 if (Stripped0 == Stripped1)
1323 if (
Constant *
C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS,
DL))
1337 return ConstantFP::get(Ty->getContext(), APF);
1339 return ConstantFP::get(
1343 return ConstantFP::get(Ty->getContext(),
1369 IsOutput ?
Mode.Output :
Mode.Input);
1398 for (
unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1420 for (
unsigned I = 0, E = CDV->getNumElements();
I < E; ++
I) {
1421 const APFloat &Elt = CDV->getElementAsAPFloat(
I);
1423 NewElts.
push_back(ConstantFP::get(Ty, Elt));
1443 bool AllowNonDeterministic) {
1456 if (!AllowNonDeterministic)
1458 if (
FP->hasNoSignedZeros() ||
FP->hasAllowReassoc() ||
1459 FP->hasAllowContract() ||
FP->hasAllowReciprocal())
1473 if (!AllowNonDeterministic &&
C->isNaN())
1492 C->getType(), DestTy, &
DL))
1498 case Instruction::PtrToAddr:
1499 case Instruction::PtrToInt:
1504 if (CE->getOpcode() == Instruction::IntToPtr) {
1506 Type *MidTy = Opcode == Instruction::PtrToInt
1507 ?
DL.getAddressType(CE->getType())
1508 :
DL.getIntPtrType(CE->getType());
1515 unsigned BitWidth =
DL.getIndexTypeSizeInBits(
GEP->getType());
1518 DL, BaseOffset,
true));
1519 if (
Base->isNullValue()) {
1520 FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset);
1524 if (
GEP->getNumIndices() == 1 &&
1525 GEP->getSourceElementType()->isIntegerTy(8)) {
1528 Type *IntIdxTy =
DL.getIndexType(
Ptr->getType());
1529 if (
Sub &&
Sub->getType() == IntIdxTy &&
1530 Sub->getOpcode() == Instruction::Sub &&
1531 Sub->getOperand(0)->isNullValue())
1534 Sub->getOperand(1));
1545 case Instruction::IntToPtr:
1551 if (CE->getOpcode() == Instruction::PtrToInt) {
1552 Constant *SrcPtr = CE->getOperand(0);
1553 unsigned SrcPtrSize =
DL.getPointerTypeSizeInBits(SrcPtr->
getType());
1554 unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1556 if (MidIntSize >= SrcPtrSize) {
1564 case Instruction::Trunc:
1565 case Instruction::ZExt:
1566 case Instruction::SExt:
1567 case Instruction::FPTrunc:
1568 case Instruction::FPExt:
1569 case Instruction::UIToFP:
1570 case Instruction::SIToFP:
1571 case Instruction::FPToUI:
1572 case Instruction::FPToSI:
1573 case Instruction::AddrSpaceCast:
1575 case Instruction::BitCast:
1586 Type *SrcTy =
C->getType();
1587 if (SrcTy == DestTy)
1601 if (
Call->isNoBuiltin())
1603 if (
Call->getFunctionType() !=
F->getFunctionType())
1612 return Arg.getType()->isFloatingPointTy();
1616 switch (
F->getIntrinsicID()) {
1619 case Intrinsic::bswap:
1620 case Intrinsic::ctpop:
1621 case Intrinsic::ctlz:
1622 case Intrinsic::cttz:
1623 case Intrinsic::fshl:
1624 case Intrinsic::fshr:
1625 case Intrinsic::launder_invariant_group:
1626 case Intrinsic::strip_invariant_group:
1627 case Intrinsic::masked_load:
1628 case Intrinsic::get_active_lane_mask:
1629 case Intrinsic::abs:
1630 case Intrinsic::smax:
1631 case Intrinsic::smin:
1632 case Intrinsic::umax:
1633 case Intrinsic::umin:
1634 case Intrinsic::scmp:
1635 case Intrinsic::ucmp:
1636 case Intrinsic::sadd_with_overflow:
1637 case Intrinsic::uadd_with_overflow:
1638 case Intrinsic::ssub_with_overflow:
1639 case Intrinsic::usub_with_overflow:
1640 case Intrinsic::smul_with_overflow:
1641 case Intrinsic::umul_with_overflow:
1642 case Intrinsic::sadd_sat:
1643 case Intrinsic::uadd_sat:
1644 case Intrinsic::ssub_sat:
1645 case Intrinsic::usub_sat:
1646 case Intrinsic::smul_fix:
1647 case Intrinsic::smul_fix_sat:
1648 case Intrinsic::bitreverse:
1649 case Intrinsic::is_constant:
1650 case Intrinsic::vector_reduce_add:
1651 case Intrinsic::vector_reduce_mul:
1652 case Intrinsic::vector_reduce_and:
1653 case Intrinsic::vector_reduce_or:
1654 case Intrinsic::vector_reduce_xor:
1655 case Intrinsic::vector_reduce_smin:
1656 case Intrinsic::vector_reduce_smax:
1657 case Intrinsic::vector_reduce_umin:
1658 case Intrinsic::vector_reduce_umax:
1659 case Intrinsic::vector_extract:
1660 case Intrinsic::vector_insert:
1661 case Intrinsic::vector_interleave2:
1662 case Intrinsic::vector_deinterleave2:
1664 case Intrinsic::amdgcn_perm:
1665 case Intrinsic::amdgcn_wave_reduce_umin:
1666 case Intrinsic::amdgcn_wave_reduce_umax:
1667 case Intrinsic::amdgcn_wave_reduce_max:
1668 case Intrinsic::amdgcn_wave_reduce_min:
1669 case Intrinsic::amdgcn_wave_reduce_add:
1670 case Intrinsic::amdgcn_wave_reduce_sub:
1671 case Intrinsic::amdgcn_wave_reduce_and:
1672 case Intrinsic::amdgcn_wave_reduce_or:
1673 case Intrinsic::amdgcn_wave_reduce_xor:
1674 case Intrinsic::amdgcn_s_wqm:
1675 case Intrinsic::amdgcn_s_quadmask:
1676 case Intrinsic::amdgcn_s_bitreplicate:
1677 case Intrinsic::arm_mve_vctp8:
1678 case Intrinsic::arm_mve_vctp16:
1679 case Intrinsic::arm_mve_vctp32:
1680 case Intrinsic::arm_mve_vctp64:
1681 case Intrinsic::aarch64_sve_convert_from_svbool:
1682 case Intrinsic::wasm_alltrue:
1683 case Intrinsic::wasm_anytrue:
1684 case Intrinsic::wasm_dot:
1686 case Intrinsic::wasm_trunc_signed:
1687 case Intrinsic::wasm_trunc_unsigned:
1692 case Intrinsic::minnum:
1693 case Intrinsic::maxnum:
1694 case Intrinsic::minimum:
1695 case Intrinsic::maximum:
1696 case Intrinsic::minimumnum:
1697 case Intrinsic::maximumnum:
1698 case Intrinsic::log:
1699 case Intrinsic::log2:
1700 case Intrinsic::log10:
1701 case Intrinsic::exp:
1702 case Intrinsic::exp2:
1703 case Intrinsic::exp10:
1704 case Intrinsic::sqrt:
1705 case Intrinsic::sin:
1706 case Intrinsic::cos:
1707 case Intrinsic::sincos:
1708 case Intrinsic::sinh:
1709 case Intrinsic::cosh:
1710 case Intrinsic::atan:
1711 case Intrinsic::pow:
1712 case Intrinsic::powi:
1713 case Intrinsic::ldexp:
1714 case Intrinsic::fma:
1715 case Intrinsic::fmuladd:
1716 case Intrinsic::frexp:
1717 case Intrinsic::fptoui_sat:
1718 case Intrinsic::fptosi_sat:
1719 case Intrinsic::convert_from_fp16:
1720 case Intrinsic::convert_to_fp16:
1721 case Intrinsic::amdgcn_cos:
1722 case Intrinsic::amdgcn_cubeid:
1723 case Intrinsic::amdgcn_cubema:
1724 case Intrinsic::amdgcn_cubesc:
1725 case Intrinsic::amdgcn_cubetc:
1726 case Intrinsic::amdgcn_fmul_legacy:
1727 case Intrinsic::amdgcn_fma_legacy:
1728 case Intrinsic::amdgcn_fract:
1729 case Intrinsic::amdgcn_sin:
1731 case Intrinsic::x86_sse_cvtss2si:
1732 case Intrinsic::x86_sse_cvtss2si64:
1733 case Intrinsic::x86_sse_cvttss2si:
1734 case Intrinsic::x86_sse_cvttss2si64:
1735 case Intrinsic::x86_sse2_cvtsd2si:
1736 case Intrinsic::x86_sse2_cvtsd2si64:
1737 case Intrinsic::x86_sse2_cvttsd2si:
1738 case Intrinsic::x86_sse2_cvttsd2si64:
1739 case Intrinsic::x86_avx512_vcvtss2si32:
1740 case Intrinsic::x86_avx512_vcvtss2si64:
1741 case Intrinsic::x86_avx512_cvttss2si:
1742 case Intrinsic::x86_avx512_cvttss2si64:
1743 case Intrinsic::x86_avx512_vcvtsd2si32:
1744 case Intrinsic::x86_avx512_vcvtsd2si64:
1745 case Intrinsic::x86_avx512_cvttsd2si:
1746 case Intrinsic::x86_avx512_cvttsd2si64:
1747 case Intrinsic::x86_avx512_vcvtss2usi32:
1748 case Intrinsic::x86_avx512_vcvtss2usi64:
1749 case Intrinsic::x86_avx512_cvttss2usi:
1750 case Intrinsic::x86_avx512_cvttss2usi64:
1751 case Intrinsic::x86_avx512_vcvtsd2usi32:
1752 case Intrinsic::x86_avx512_vcvtsd2usi64:
1753 case Intrinsic::x86_avx512_cvttsd2usi:
1754 case Intrinsic::x86_avx512_cvttsd2usi64:
1757 case Intrinsic::nvvm_fmax_d:
1758 case Intrinsic::nvvm_fmax_f:
1759 case Intrinsic::nvvm_fmax_ftz_f:
1760 case Intrinsic::nvvm_fmax_ftz_nan_f:
1761 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
1762 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
1763 case Intrinsic::nvvm_fmax_nan_f:
1764 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
1765 case Intrinsic::nvvm_fmax_xorsign_abs_f:
1768 case Intrinsic::nvvm_fmin_d:
1769 case Intrinsic::nvvm_fmin_f:
1770 case Intrinsic::nvvm_fmin_ftz_f:
1771 case Intrinsic::nvvm_fmin_ftz_nan_f:
1772 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
1773 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
1774 case Intrinsic::nvvm_fmin_nan_f:
1775 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
1776 case Intrinsic::nvvm_fmin_xorsign_abs_f:
1779 case Intrinsic::nvvm_f2i_rm:
1780 case Intrinsic::nvvm_f2i_rn:
1781 case Intrinsic::nvvm_f2i_rp:
1782 case Intrinsic::nvvm_f2i_rz:
1783 case Intrinsic::nvvm_f2i_rm_ftz:
1784 case Intrinsic::nvvm_f2i_rn_ftz:
1785 case Intrinsic::nvvm_f2i_rp_ftz:
1786 case Intrinsic::nvvm_f2i_rz_ftz:
1787 case Intrinsic::nvvm_f2ui_rm:
1788 case Intrinsic::nvvm_f2ui_rn:
1789 case Intrinsic::nvvm_f2ui_rp:
1790 case Intrinsic::nvvm_f2ui_rz:
1791 case Intrinsic::nvvm_f2ui_rm_ftz:
1792 case Intrinsic::nvvm_f2ui_rn_ftz:
1793 case Intrinsic::nvvm_f2ui_rp_ftz:
1794 case Intrinsic::nvvm_f2ui_rz_ftz:
1795 case Intrinsic::nvvm_d2i_rm:
1796 case Intrinsic::nvvm_d2i_rn:
1797 case Intrinsic::nvvm_d2i_rp:
1798 case Intrinsic::nvvm_d2i_rz:
1799 case Intrinsic::nvvm_d2ui_rm:
1800 case Intrinsic::nvvm_d2ui_rn:
1801 case Intrinsic::nvvm_d2ui_rp:
1802 case Intrinsic::nvvm_d2ui_rz:
1805 case Intrinsic::nvvm_f2ll_rm:
1806 case Intrinsic::nvvm_f2ll_rn:
1807 case Intrinsic::nvvm_f2ll_rp:
1808 case Intrinsic::nvvm_f2ll_rz:
1809 case Intrinsic::nvvm_f2ll_rm_ftz:
1810 case Intrinsic::nvvm_f2ll_rn_ftz:
1811 case Intrinsic::nvvm_f2ll_rp_ftz:
1812 case Intrinsic::nvvm_f2ll_rz_ftz:
1813 case Intrinsic::nvvm_f2ull_rm:
1814 case Intrinsic::nvvm_f2ull_rn:
1815 case Intrinsic::nvvm_f2ull_rp:
1816 case Intrinsic::nvvm_f2ull_rz:
1817 case Intrinsic::nvvm_f2ull_rm_ftz:
1818 case Intrinsic::nvvm_f2ull_rn_ftz:
1819 case Intrinsic::nvvm_f2ull_rp_ftz:
1820 case Intrinsic::nvvm_f2ull_rz_ftz:
1821 case Intrinsic::nvvm_d2ll_rm:
1822 case Intrinsic::nvvm_d2ll_rn:
1823 case Intrinsic::nvvm_d2ll_rp:
1824 case Intrinsic::nvvm_d2ll_rz:
1825 case Intrinsic::nvvm_d2ull_rm:
1826 case Intrinsic::nvvm_d2ull_rn:
1827 case Intrinsic::nvvm_d2ull_rp:
1828 case Intrinsic::nvvm_d2ull_rz:
1831 case Intrinsic::nvvm_ceil_d:
1832 case Intrinsic::nvvm_ceil_f:
1833 case Intrinsic::nvvm_ceil_ftz_f:
1835 case Intrinsic::nvvm_fabs:
1836 case Intrinsic::nvvm_fabs_ftz:
1838 case Intrinsic::nvvm_floor_d:
1839 case Intrinsic::nvvm_floor_f:
1840 case Intrinsic::nvvm_floor_ftz_f:
1842 case Intrinsic::nvvm_rcp_rm_d:
1843 case Intrinsic::nvvm_rcp_rm_f:
1844 case Intrinsic::nvvm_rcp_rm_ftz_f:
1845 case Intrinsic::nvvm_rcp_rn_d:
1846 case Intrinsic::nvvm_rcp_rn_f:
1847 case Intrinsic::nvvm_rcp_rn_ftz_f:
1848 case Intrinsic::nvvm_rcp_rp_d:
1849 case Intrinsic::nvvm_rcp_rp_f:
1850 case Intrinsic::nvvm_rcp_rp_ftz_f:
1851 case Intrinsic::nvvm_rcp_rz_d:
1852 case Intrinsic::nvvm_rcp_rz_f:
1853 case Intrinsic::nvvm_rcp_rz_ftz_f:
1855 case Intrinsic::nvvm_round_d:
1856 case Intrinsic::nvvm_round_f:
1857 case Intrinsic::nvvm_round_ftz_f:
1859 case Intrinsic::nvvm_saturate_d:
1860 case Intrinsic::nvvm_saturate_f:
1861 case Intrinsic::nvvm_saturate_ftz_f:
1863 case Intrinsic::nvvm_sqrt_f:
1864 case Intrinsic::nvvm_sqrt_rn_d:
1865 case Intrinsic::nvvm_sqrt_rn_f:
1866 case Intrinsic::nvvm_sqrt_rn_ftz_f:
1867 return !
Call->isStrictFP();
1870 case Intrinsic::nvvm_add_rm_d:
1871 case Intrinsic::nvvm_add_rn_d:
1872 case Intrinsic::nvvm_add_rp_d:
1873 case Intrinsic::nvvm_add_rz_d:
1874 case Intrinsic::nvvm_add_rm_f:
1875 case Intrinsic::nvvm_add_rn_f:
1876 case Intrinsic::nvvm_add_rp_f:
1877 case Intrinsic::nvvm_add_rz_f:
1878 case Intrinsic::nvvm_add_rm_ftz_f:
1879 case Intrinsic::nvvm_add_rn_ftz_f:
1880 case Intrinsic::nvvm_add_rp_ftz_f:
1881 case Intrinsic::nvvm_add_rz_ftz_f:
1884 case Intrinsic::nvvm_div_rm_d:
1885 case Intrinsic::nvvm_div_rn_d:
1886 case Intrinsic::nvvm_div_rp_d:
1887 case Intrinsic::nvvm_div_rz_d:
1888 case Intrinsic::nvvm_div_rm_f:
1889 case Intrinsic::nvvm_div_rn_f:
1890 case Intrinsic::nvvm_div_rp_f:
1891 case Intrinsic::nvvm_div_rz_f:
1892 case Intrinsic::nvvm_div_rm_ftz_f:
1893 case Intrinsic::nvvm_div_rn_ftz_f:
1894 case Intrinsic::nvvm_div_rp_ftz_f:
1895 case Intrinsic::nvvm_div_rz_ftz_f:
1898 case Intrinsic::nvvm_mul_rm_d:
1899 case Intrinsic::nvvm_mul_rn_d:
1900 case Intrinsic::nvvm_mul_rp_d:
1901 case Intrinsic::nvvm_mul_rz_d:
1902 case Intrinsic::nvvm_mul_rm_f:
1903 case Intrinsic::nvvm_mul_rn_f:
1904 case Intrinsic::nvvm_mul_rp_f:
1905 case Intrinsic::nvvm_mul_rz_f:
1906 case Intrinsic::nvvm_mul_rm_ftz_f:
1907 case Intrinsic::nvvm_mul_rn_ftz_f:
1908 case Intrinsic::nvvm_mul_rp_ftz_f:
1909 case Intrinsic::nvvm_mul_rz_ftz_f:
1912 case Intrinsic::nvvm_fma_rm_d:
1913 case Intrinsic::nvvm_fma_rn_d:
1914 case Intrinsic::nvvm_fma_rp_d:
1915 case Intrinsic::nvvm_fma_rz_d:
1916 case Intrinsic::nvvm_fma_rm_f:
1917 case Intrinsic::nvvm_fma_rn_f:
1918 case Intrinsic::nvvm_fma_rp_f:
1919 case Intrinsic::nvvm_fma_rz_f:
1920 case Intrinsic::nvvm_fma_rm_ftz_f:
1921 case Intrinsic::nvvm_fma_rn_ftz_f:
1922 case Intrinsic::nvvm_fma_rp_ftz_f:
1923 case Intrinsic::nvvm_fma_rz_ftz_f:
1927 case Intrinsic::fabs:
1928 case Intrinsic::copysign:
1929 case Intrinsic::is_fpclass:
1932 case Intrinsic::ceil:
1933 case Intrinsic::floor:
1934 case Intrinsic::round:
1935 case Intrinsic::roundeven:
1936 case Intrinsic::trunc:
1937 case Intrinsic::nearbyint:
1938 case Intrinsic::rint:
1939 case Intrinsic::canonicalize:
1943 case Intrinsic::experimental_constrained_fma:
1944 case Intrinsic::experimental_constrained_fmuladd:
1945 case Intrinsic::experimental_constrained_fadd:
1946 case Intrinsic::experimental_constrained_fsub:
1947 case Intrinsic::experimental_constrained_fmul:
1948 case Intrinsic::experimental_constrained_fdiv:
1949 case Intrinsic::experimental_constrained_frem:
1950 case Intrinsic::experimental_constrained_ceil:
1951 case Intrinsic::experimental_constrained_floor:
1952 case Intrinsic::experimental_constrained_round:
1953 case Intrinsic::experimental_constrained_roundeven:
1954 case Intrinsic::experimental_constrained_trunc:
1955 case Intrinsic::experimental_constrained_nearbyint:
1956 case Intrinsic::experimental_constrained_rint:
1957 case Intrinsic::experimental_constrained_fcmp:
1958 case Intrinsic::experimental_constrained_fcmps:
1965 if (!
F->hasName() ||
Call->isStrictFP())
1976 return Name ==
"acos" || Name ==
"acosf" ||
1977 Name ==
"asin" || Name ==
"asinf" ||
1978 Name ==
"atan" || Name ==
"atanf" ||
1979 Name ==
"atan2" || Name ==
"atan2f";
1981 return Name ==
"ceil" || Name ==
"ceilf" ||
1982 Name ==
"cos" || Name ==
"cosf" ||
1983 Name ==
"cosh" || Name ==
"coshf";
1985 return Name ==
"exp" || Name ==
"expf" || Name ==
"exp2" ||
1986 Name ==
"exp2f" || Name ==
"erf" || Name ==
"erff";
1988 return Name ==
"fabs" || Name ==
"fabsf" ||
1989 Name ==
"floor" || Name ==
"floorf" ||
1990 Name ==
"fmod" || Name ==
"fmodf";
1992 return Name ==
"ilogb" || Name ==
"ilogbf";
1994 return Name ==
"log" || Name ==
"logf" || Name ==
"logl" ||
1995 Name ==
"log2" || Name ==
"log2f" || Name ==
"log10" ||
1996 Name ==
"log10f" || Name ==
"logb" || Name ==
"logbf" ||
1997 Name ==
"log1p" || Name ==
"log1pf";
1999 return Name ==
"nearbyint" || Name ==
"nearbyintf";
2001 return Name ==
"pow" || Name ==
"powf";
2003 return Name ==
"remainder" || Name ==
"remainderf" ||
2004 Name ==
"rint" || Name ==
"rintf" ||
2005 Name ==
"round" || Name ==
"roundf";
2007 return Name ==
"sin" || Name ==
"sinf" ||
2008 Name ==
"sinh" || Name ==
"sinhf" ||
2009 Name ==
"sqrt" || Name ==
"sqrtf";
2011 return Name ==
"tan" || Name ==
"tanf" ||
2012 Name ==
"tanh" || Name ==
"tanhf" ||
2013 Name ==
"trunc" || Name ==
"truncf";
2021 if (Name.size() < 12 || Name[1] !=
'_')
2027 return Name ==
"__acos_finite" || Name ==
"__acosf_finite" ||
2028 Name ==
"__asin_finite" || Name ==
"__asinf_finite" ||
2029 Name ==
"__atan2_finite" || Name ==
"__atan2f_finite";
2031 return Name ==
"__cosh_finite" || Name ==
"__coshf_finite";
2033 return Name ==
"__exp_finite" || Name ==
"__expf_finite" ||
2034 Name ==
"__exp2_finite" || Name ==
"__exp2f_finite";
2036 return Name ==
"__log_finite" || Name ==
"__logf_finite" ||
2037 Name ==
"__log10_finite" || Name ==
"__log10f_finite";
2039 return Name ==
"__pow_finite" || Name ==
"__powf_finite";
2041 return Name ==
"__sinh_finite" || Name ==
"__sinhf_finite";
2049 if (Ty->isHalfTy() || Ty->isFloatTy()) {
2053 return ConstantFP::get(Ty->getContext(), APF);
2055 if (Ty->isDoubleTy())
2056 return ConstantFP::get(Ty->getContext(),
APFloat(V));
2060#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2061Constant *GetConstantFoldFPValue128(float128 V,
Type *Ty) {
2062 if (Ty->isFP128Ty())
2063 return ConstantFP::get(Ty, V);
2069inline void llvm_fenv_clearexcept() {
2070#if HAVE_DECL_FE_ALL_EXCEPT
2071 feclearexcept(FE_ALL_EXCEPT);
2077inline bool llvm_fenv_testexcept() {
2078 int errno_val = errno;
2079 if (errno_val == ERANGE || errno_val == EDOM)
2081#if HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
2082 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
2104 switch (DenormKind) {
2108 return FTZPreserveSign(V);
2110 return FlushToPositiveZero(V);
2118 if (!DenormMode.isValid() ||
2123 llvm_fenv_clearexcept();
2124 auto Input = FlushWithDenormKind(V, DenormMode.Input);
2125 double Result = NativeFP(
Input.convertToDouble());
2126 if (llvm_fenv_testexcept()) {
2127 llvm_fenv_clearexcept();
2131 Constant *Output = GetConstantFoldFPValue(Result, Ty);
2134 const auto *CFP =
static_cast<ConstantFP *
>(Output);
2135 const auto Res = FlushWithDenormKind(CFP->getValueAPF(), DenormMode.Output);
2136 return ConstantFP::get(Ty->getContext(), Res);
2139#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2140Constant *ConstantFoldFP128(float128 (*NativeFP)(float128),
const APFloat &V,
2142 llvm_fenv_clearexcept();
2143 float128
Result = NativeFP(V.convertToQuad());
2144 if (llvm_fenv_testexcept()) {
2145 llvm_fenv_clearexcept();
2149 return GetConstantFoldFPValue128(Result, Ty);
2153Constant *ConstantFoldBinaryFP(
double (*NativeFP)(
double,
double),
2155 llvm_fenv_clearexcept();
2156 double Result = NativeFP(V.convertToDouble(),
W.convertToDouble());
2157 if (llvm_fenv_testexcept()) {
2158 llvm_fenv_clearexcept();
2162 return GetConstantFoldFPValue(Result, Ty);
2169 if (
Op->containsPoisonElement())
2173 if (
Constant *SplatVal =
Op->getSplatValue()) {
2175 case Intrinsic::vector_reduce_and:
2176 case Intrinsic::vector_reduce_or:
2177 case Intrinsic::vector_reduce_smin:
2178 case Intrinsic::vector_reduce_smax:
2179 case Intrinsic::vector_reduce_umin:
2180 case Intrinsic::vector_reduce_umax:
2182 case Intrinsic::vector_reduce_add:
2183 if (SplatVal->isNullValue())
2186 case Intrinsic::vector_reduce_mul:
2187 if (SplatVal->isNullValue() || SplatVal->isOneValue())
2190 case Intrinsic::vector_reduce_xor:
2191 if (SplatVal->isNullValue())
2193 if (OpVT->getElementCount().isKnownMultipleOf(2))
2208 APInt Acc = EltC->getValue();
2212 const APInt &
X = EltC->getValue();
2214 case Intrinsic::vector_reduce_add:
2217 case Intrinsic::vector_reduce_mul:
2220 case Intrinsic::vector_reduce_and:
2223 case Intrinsic::vector_reduce_or:
2226 case Intrinsic::vector_reduce_xor:
2229 case Intrinsic::vector_reduce_smin:
2232 case Intrinsic::vector_reduce_smax:
2235 case Intrinsic::vector_reduce_umin:
2238 case Intrinsic::vector_reduce_umax:
2244 return ConstantInt::get(
Op->getContext(), Acc);
2254Constant *ConstantFoldSSEConvertToInt(
const APFloat &Val,
bool roundTowardZero,
2255 Type *Ty,
bool IsSigned) {
2257 unsigned ResultWidth = Ty->getIntegerBitWidth();
2258 assert(ResultWidth <= 64 &&
2259 "Can only constant fold conversions to 64 and 32 bit ints");
2262 bool isExact =
false;
2267 IsSigned,
mode, &isExact);
2271 return ConstantInt::get(Ty, UIntVal, IsSigned);
2275 Type *Ty =
Op->getType();
2277 if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
2278 return Op->getValueAPF().convertToDouble();
2288 C = &CI->getValue();
2347 return ConstantFP::get(
2352 if (!Ty->isIEEELikeFPTy())
2359 if (Src.isNormal() || Src.isInfinity())
2360 return ConstantFP::get(CI->
getContext(), Src);
2367 return ConstantFP::get(CI->
getContext(), Src);
2397 assert(Operands.
size() == 1 &&
"Wrong number of operands.");
2399 if (IntrinsicID == Intrinsic::is_constant) {
2403 if (Operands[0]->isManifestConstant())
2412 if (IntrinsicID == Intrinsic::cos ||
2413 IntrinsicID == Intrinsic::ctpop ||
2414 IntrinsicID == Intrinsic::fptoui_sat ||
2415 IntrinsicID == Intrinsic::fptosi_sat ||
2416 IntrinsicID == Intrinsic::canonicalize)
2418 if (IntrinsicID == Intrinsic::bswap ||
2419 IntrinsicID == Intrinsic::bitreverse ||
2420 IntrinsicID == Intrinsic::launder_invariant_group ||
2421 IntrinsicID == Intrinsic::strip_invariant_group)
2427 if (IntrinsicID == Intrinsic::launder_invariant_group ||
2428 IntrinsicID == Intrinsic::strip_invariant_group) {
2433 Call->getParent() ?
Call->getCaller() :
nullptr;
2444 if (IntrinsicID == Intrinsic::convert_to_fp16) {
2455 if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
2456 IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
2457 bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
2462 unsigned Width = Ty->getIntegerBitWidth();
2464 bool IsExact =
false;
2469 return ConstantInt::get(Ty,
Int);
2474 if (IntrinsicID == Intrinsic::fptoui_sat ||
2475 IntrinsicID == Intrinsic::fptosi_sat) {
2478 IntrinsicID == Intrinsic::fptoui_sat);
2481 return ConstantInt::get(Ty,
Int);
2484 if (IntrinsicID == Intrinsic::canonicalize)
2485 return constantFoldCanonicalize(Ty,
Call, U);
2487#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2488 if (Ty->isFP128Ty()) {
2489 if (IntrinsicID == Intrinsic::log) {
2490 float128
Result = logf128(
Op->getValueAPF().convertToQuad());
2491 return GetConstantFoldFPValue128(Result, Ty);
2495 if (TLI && TLI->
getLibFunc(Name, Fp128Func) && TLI->
has(Fp128Func) &&
2496 Fp128Func == LibFunc_logl)
2497 return ConstantFoldFP128(logf128,
Op->getValueAPF(), Ty);
2501 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy() &&
2507 if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
2509 return ConstantFP::get(Ty->getContext(), U);
2512 if (IntrinsicID == Intrinsic::round) {
2514 return ConstantFP::get(Ty->getContext(), U);
2517 if (IntrinsicID == Intrinsic::roundeven) {
2519 return ConstantFP::get(Ty->getContext(), U);
2522 if (IntrinsicID == Intrinsic::ceil) {
2524 return ConstantFP::get(Ty->getContext(), U);
2527 if (IntrinsicID == Intrinsic::floor) {
2529 return ConstantFP::get(Ty->getContext(), U);
2532 if (IntrinsicID == Intrinsic::trunc) {
2534 return ConstantFP::get(Ty->getContext(), U);
2537 if (IntrinsicID == Intrinsic::fabs) {
2539 return ConstantFP::get(Ty->getContext(), U);
2542 if (IntrinsicID == Intrinsic::amdgcn_fract) {
2550 APFloat AlmostOne(U.getSemantics(), 1);
2551 AlmostOne.next(
true);
2552 return ConstantFP::get(Ty->getContext(),
minimum(FractU, AlmostOne));
2558 std::optional<APFloat::roundingMode>
RM;
2559 switch (IntrinsicID) {
2562 case Intrinsic::experimental_constrained_nearbyint:
2563 case Intrinsic::experimental_constrained_rint: {
2565 RM = CI->getRoundingMode();
2570 case Intrinsic::experimental_constrained_round:
2573 case Intrinsic::experimental_constrained_ceil:
2576 case Intrinsic::experimental_constrained_floor:
2579 case Intrinsic::experimental_constrained_trunc:
2587 if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
2589 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2593 }
else if (U.isSignaling()) {
2594 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2599 return ConstantFP::get(Ty->getContext(), U);
2603 switch (IntrinsicID) {
2605 case Intrinsic::nvvm_f2i_rm:
2606 case Intrinsic::nvvm_f2i_rn:
2607 case Intrinsic::nvvm_f2i_rp:
2608 case Intrinsic::nvvm_f2i_rz:
2609 case Intrinsic::nvvm_f2i_rm_ftz:
2610 case Intrinsic::nvvm_f2i_rn_ftz:
2611 case Intrinsic::nvvm_f2i_rp_ftz:
2612 case Intrinsic::nvvm_f2i_rz_ftz:
2614 case Intrinsic::nvvm_f2ui_rm:
2615 case Intrinsic::nvvm_f2ui_rn:
2616 case Intrinsic::nvvm_f2ui_rp:
2617 case Intrinsic::nvvm_f2ui_rz:
2618 case Intrinsic::nvvm_f2ui_rm_ftz:
2619 case Intrinsic::nvvm_f2ui_rn_ftz:
2620 case Intrinsic::nvvm_f2ui_rp_ftz:
2621 case Intrinsic::nvvm_f2ui_rz_ftz:
2623 case Intrinsic::nvvm_d2i_rm:
2624 case Intrinsic::nvvm_d2i_rn:
2625 case Intrinsic::nvvm_d2i_rp:
2626 case Intrinsic::nvvm_d2i_rz:
2628 case Intrinsic::nvvm_d2ui_rm:
2629 case Intrinsic::nvvm_d2ui_rn:
2630 case Intrinsic::nvvm_d2ui_rp:
2631 case Intrinsic::nvvm_d2ui_rz:
2633 case Intrinsic::nvvm_f2ll_rm:
2634 case Intrinsic::nvvm_f2ll_rn:
2635 case Intrinsic::nvvm_f2ll_rp:
2636 case Intrinsic::nvvm_f2ll_rz:
2637 case Intrinsic::nvvm_f2ll_rm_ftz:
2638 case Intrinsic::nvvm_f2ll_rn_ftz:
2639 case Intrinsic::nvvm_f2ll_rp_ftz:
2640 case Intrinsic::nvvm_f2ll_rz_ftz:
2642 case Intrinsic::nvvm_f2ull_rm:
2643 case Intrinsic::nvvm_f2ull_rn:
2644 case Intrinsic::nvvm_f2ull_rp:
2645 case Intrinsic::nvvm_f2ull_rz:
2646 case Intrinsic::nvvm_f2ull_rm_ftz:
2647 case Intrinsic::nvvm_f2ull_rn_ftz:
2648 case Intrinsic::nvvm_f2ull_rp_ftz:
2649 case Intrinsic::nvvm_f2ull_rz_ftz:
2651 case Intrinsic::nvvm_d2ll_rm:
2652 case Intrinsic::nvvm_d2ll_rn:
2653 case Intrinsic::nvvm_d2ll_rp:
2654 case Intrinsic::nvvm_d2ll_rz:
2656 case Intrinsic::nvvm_d2ull_rm:
2657 case Intrinsic::nvvm_d2ull_rn:
2658 case Intrinsic::nvvm_d2ull_rp:
2659 case Intrinsic::nvvm_d2ull_rz: {
2665 return ConstantInt::get(Ty, 0);
2668 unsigned BitWidth = Ty->getIntegerBitWidth();
2678 APSInt ResInt(Ty->getIntegerBitWidth(), !IsSigned);
2679 auto FloatToRound = IsFTZ ? FTZPreserveSign(U) : U;
2683 bool IsExact =
false;
2684 FloatToRound.convertToInteger(ResInt, RMode, &IsExact);
2685 return ConstantInt::get(Ty, ResInt);
2701 switch (IntrinsicID) {
2703 case Intrinsic::log:
2704 return ConstantFoldFP(log, APF, Ty);
2705 case Intrinsic::log2:
2707 return ConstantFoldFP(
log2, APF, Ty);
2708 case Intrinsic::log10:
2710 return ConstantFoldFP(log10, APF, Ty);
2711 case Intrinsic::exp:
2712 return ConstantFoldFP(exp, APF, Ty);
2713 case Intrinsic::exp2:
2715 return ConstantFoldBinaryFP(pow,
APFloat(2.0), APF, Ty);
2716 case Intrinsic::exp10:
2718 return ConstantFoldBinaryFP(pow,
APFloat(10.0), APF, Ty);
2719 case Intrinsic::sin:
2720 return ConstantFoldFP(sin, APF, Ty);
2721 case Intrinsic::cos:
2722 return ConstantFoldFP(cos, APF, Ty);
2723 case Intrinsic::sinh:
2724 return ConstantFoldFP(sinh, APF, Ty);
2725 case Intrinsic::cosh:
2726 return ConstantFoldFP(cosh, APF, Ty);
2727 case Intrinsic::atan:
2730 return ConstantFP::get(Ty->getContext(), U);
2731 return ConstantFoldFP(atan, APF, Ty);
2732 case Intrinsic::sqrt:
2733 return ConstantFoldFP(sqrt, APF, Ty);
2736 case Intrinsic::nvvm_ceil_ftz_f:
2737 case Intrinsic::nvvm_ceil_f:
2738 case Intrinsic::nvvm_ceil_d:
2739 return ConstantFoldFP(
2744 case Intrinsic::nvvm_fabs_ftz:
2745 case Intrinsic::nvvm_fabs:
2746 return ConstantFoldFP(
2751 case Intrinsic::nvvm_floor_ftz_f:
2752 case Intrinsic::nvvm_floor_f:
2753 case Intrinsic::nvvm_floor_d:
2754 return ConstantFoldFP(
2759 case Intrinsic::nvvm_rcp_rm_ftz_f:
2760 case Intrinsic::nvvm_rcp_rn_ftz_f:
2761 case Intrinsic::nvvm_rcp_rp_ftz_f:
2762 case Intrinsic::nvvm_rcp_rz_ftz_f:
2763 case Intrinsic::nvvm_rcp_rm_d:
2764 case Intrinsic::nvvm_rcp_rm_f:
2765 case Intrinsic::nvvm_rcp_rn_d:
2766 case Intrinsic::nvvm_rcp_rn_f:
2767 case Intrinsic::nvvm_rcp_rp_d:
2768 case Intrinsic::nvvm_rcp_rp_f:
2769 case Intrinsic::nvvm_rcp_rz_d:
2770 case Intrinsic::nvvm_rcp_rz_f: {
2774 auto Denominator = IsFTZ ? FTZPreserveSign(APF) : APF;
2780 Res = FTZPreserveSign(Res);
2781 return ConstantFP::get(Ty->getContext(), Res);
2786 case Intrinsic::nvvm_round_ftz_f:
2787 case Intrinsic::nvvm_round_f:
2788 case Intrinsic::nvvm_round_d: {
2793 auto V = IsFTZ ? FTZPreserveSign(APF) : APF;
2795 return ConstantFP::get(Ty->getContext(), V);
2798 case Intrinsic::nvvm_saturate_ftz_f:
2799 case Intrinsic::nvvm_saturate_d:
2800 case Intrinsic::nvvm_saturate_f: {
2802 auto V = IsFTZ ? FTZPreserveSign(APF) : APF;
2803 if (V.isNegative() || V.isZero() || V.isNaN())
2807 return ConstantFP::get(Ty->getContext(), One);
2808 return ConstantFP::get(Ty->getContext(), APF);
2811 case Intrinsic::nvvm_sqrt_rn_ftz_f:
2812 case Intrinsic::nvvm_sqrt_f:
2813 case Intrinsic::nvvm_sqrt_rn_d:
2814 case Intrinsic::nvvm_sqrt_rn_f:
2817 return ConstantFoldFP(
2823 case Intrinsic::amdgcn_cos:
2824 case Intrinsic::amdgcn_sin: {
2825 double V = getValueAsDouble(
Op);
2826 if (V < -256.0 || V > 256.0)
2831 bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
2832 double V4 = V * 4.0;
2833 if (V4 == floor(V4)) {
2835 const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
2836 V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
2843 return GetConstantFoldFPValue(V, Ty);
2859 case LibFunc_acos_finite:
2860 case LibFunc_acosf_finite:
2862 return ConstantFoldFP(acos, APF, Ty);
2866 case LibFunc_asin_finite:
2867 case LibFunc_asinf_finite:
2869 return ConstantFoldFP(asin, APF, Ty);
2875 return ConstantFP::get(Ty->getContext(), U);
2877 return ConstantFoldFP(atan, APF, Ty);
2881 if (TLI->
has(Func)) {
2883 return ConstantFP::get(Ty->getContext(), U);
2889 return ConstantFoldFP(cos, APF, Ty);
2893 case LibFunc_cosh_finite:
2894 case LibFunc_coshf_finite:
2896 return ConstantFoldFP(cosh, APF, Ty);
2900 case LibFunc_exp_finite:
2901 case LibFunc_expf_finite:
2903 return ConstantFoldFP(exp, APF, Ty);
2907 case LibFunc_exp2_finite:
2908 case LibFunc_exp2f_finite:
2911 return ConstantFoldBinaryFP(pow,
APFloat(2.0), APF, Ty);
2915 if (TLI->
has(Func)) {
2917 return ConstantFP::get(Ty->getContext(), U);
2921 case LibFunc_floorf:
2922 if (TLI->
has(Func)) {
2924 return ConstantFP::get(Ty->getContext(), U);
2929 case LibFunc_log_finite:
2930 case LibFunc_logf_finite:
2932 return ConstantFoldFP(log, APF, Ty);
2936 case LibFunc_log2_finite:
2937 case LibFunc_log2f_finite:
2940 return ConstantFoldFP(
log2, APF, Ty);
2943 case LibFunc_log10f:
2944 case LibFunc_log10_finite:
2945 case LibFunc_log10f_finite:
2948 return ConstantFoldFP(log10, APF, Ty);
2951 case LibFunc_ilogbf:
2953 return ConstantInt::get(Ty,
ilogb(APF),
true);
2958 return ConstantFoldFP(logb, APF, Ty);
2961 case LibFunc_log1pf:
2964 return ConstantFP::get(Ty->getContext(), U);
2966 return ConstantFoldFP(log1p, APF, Ty);
2973 return ConstantFoldFP(erf, APF, Ty);
2975 case LibFunc_nearbyint:
2976 case LibFunc_nearbyintf:
2979 if (TLI->
has(Func)) {
2981 return ConstantFP::get(Ty->getContext(), U);
2985 case LibFunc_roundf:
2986 if (TLI->
has(Func)) {
2988 return ConstantFP::get(Ty->getContext(), U);
2994 return ConstantFoldFP(sin, APF, Ty);
2998 case LibFunc_sinh_finite:
2999 case LibFunc_sinhf_finite:
3001 return ConstantFoldFP(sinh, APF, Ty);
3006 return ConstantFoldFP(sqrt, APF, Ty);
3011 return ConstantFoldFP(tan, APF, Ty);
3016 return ConstantFoldFP(tanh, APF, Ty);
3019 case LibFunc_truncf:
3020 if (TLI->
has(Func)) {
3022 return ConstantFP::get(Ty->getContext(), U);
3030 switch (IntrinsicID) {
3031 case Intrinsic::bswap:
3032 return ConstantInt::get(Ty->getContext(),
Op->getValue().byteSwap());
3033 case Intrinsic::ctpop:
3034 return ConstantInt::get(Ty,
Op->getValue().popcount());
3035 case Intrinsic::bitreverse:
3036 return ConstantInt::get(Ty->getContext(),
Op->getValue().reverseBits());
3037 case Intrinsic::convert_from_fp16: {
3047 "Precision lost during fp16 constfolding");
3049 return ConstantFP::get(Ty->getContext(), Val);
3052 case Intrinsic::amdgcn_s_wqm: {
3054 Val |= (Val & 0x5555555555555555ULL) << 1 |
3055 ((Val >> 1) & 0x5555555555555555ULL);
3056 Val |= (Val & 0x3333333333333333ULL) << 2 |
3057 ((Val >> 2) & 0x3333333333333333ULL);
3058 return ConstantInt::get(Ty, Val);
3061 case Intrinsic::amdgcn_s_quadmask: {
3064 for (
unsigned I = 0;
I <
Op->getBitWidth() / 4; ++
I, Val >>= 4) {
3068 QuadMask |= (1ULL <<
I);
3070 return ConstantInt::get(Ty, QuadMask);
3073 case Intrinsic::amdgcn_s_bitreplicate: {
3075 Val = (Val & 0x000000000000FFFFULL) | (Val & 0x00000000FFFF0000ULL) << 16;
3076 Val = (Val & 0x000000FF000000FFULL) | (Val & 0x0000FF000000FF00ULL) << 8;
3077 Val = (Val & 0x000F000F000F000FULL) | (Val & 0x00F000F000F000F0ULL) << 4;
3078 Val = (Val & 0x0303030303030303ULL) | (Val & 0x0C0C0C0C0C0C0C0CULL) << 2;
3079 Val = (Val & 0x1111111111111111ULL) | (Val & 0x2222222222222222ULL) << 1;
3080 Val = Val | Val << 1;
3081 return ConstantInt::get(Ty, Val);
3086 if (Operands[0]->
getType()->isVectorTy()) {
3088 switch (IntrinsicID) {
3090 case Intrinsic::vector_reduce_add:
3091 case Intrinsic::vector_reduce_mul:
3092 case Intrinsic::vector_reduce_and:
3093 case Intrinsic::vector_reduce_or:
3094 case Intrinsic::vector_reduce_xor:
3095 case Intrinsic::vector_reduce_smin:
3096 case Intrinsic::vector_reduce_smax:
3097 case Intrinsic::vector_reduce_umin:
3098 case Intrinsic::vector_reduce_umax:
3099 if (
Constant *
C = constantFoldVectorReduce(IntrinsicID, Operands[0]))
3102 case Intrinsic::x86_sse_cvtss2si:
3103 case Intrinsic::x86_sse_cvtss2si64:
3104 case Intrinsic::x86_sse2_cvtsd2si:
3105 case Intrinsic::x86_sse2_cvtsd2si64:
3108 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3112 case Intrinsic::x86_sse_cvttss2si:
3113 case Intrinsic::x86_sse_cvttss2si64:
3114 case Intrinsic::x86_sse2_cvttsd2si:
3115 case Intrinsic::x86_sse2_cvttsd2si64:
3118 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3123 case Intrinsic::wasm_anytrue:
3124 return Op->isZeroValue() ? ConstantInt::get(Ty, 0)
3127 case Intrinsic::wasm_alltrue:
3130 for (
unsigned I = 0;
I !=
E; ++
I) {
3134 return ConstantInt::get(Ty, 0);
3140 return ConstantInt::get(Ty, 1);
3152 if (FCmp->isSignaling()) {
3161 return ConstantInt::get(
Call->getType()->getScalarType(), Result);
3183 const APFloat &Op1V = Op1->getValueAPF();
3184 const APFloat &Op2V = Op2->getValueAPF();
3191 case LibFunc_pow_finite:
3192 case LibFunc_powf_finite:
3194 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
3198 if (TLI->
has(Func)) {
3199 APFloat V = Op1->getValueAPF();
3201 return ConstantFP::get(Ty->getContext(), V);
3204 case LibFunc_remainder:
3205 case LibFunc_remainderf:
3206 if (TLI->
has(Func)) {
3207 APFloat V = Op1->getValueAPF();
3209 return ConstantFP::get(Ty->getContext(), V);
3213 case LibFunc_atan2f:
3219 case LibFunc_atan2_finite:
3220 case LibFunc_atan2f_finite:
3222 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
3232 assert(Operands.
size() == 2 &&
"Wrong number of operands.");
3234 if (Ty->isFloatingPointTy()) {
3239 switch (IntrinsicID) {
3240 case Intrinsic::maxnum:
3241 case Intrinsic::minnum:
3242 case Intrinsic::maximum:
3243 case Intrinsic::minimum:
3244 case Intrinsic::maximumnum:
3245 case Intrinsic::minimumnum:
3246 case Intrinsic::nvvm_fmax_d:
3247 case Intrinsic::nvvm_fmin_d:
3255 case Intrinsic::nvvm_fmax_f:
3256 case Intrinsic::nvvm_fmax_ftz_f:
3257 case Intrinsic::nvvm_fmax_ftz_nan_f:
3258 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3259 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3260 case Intrinsic::nvvm_fmax_nan_f:
3261 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3262 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3264 case Intrinsic::nvvm_fmin_f:
3265 case Intrinsic::nvvm_fmin_ftz_f:
3266 case Intrinsic::nvvm_fmin_ftz_nan_f:
3267 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
3268 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
3269 case Intrinsic::nvvm_fmin_nan_f:
3270 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
3271 case Intrinsic::nvvm_fmin_xorsign_abs_f:
3275 if (!IsOp0Undef && !IsOp1Undef)
3279 APInt NVCanonicalNaN(32, 0x7fffffff);
3280 return ConstantFP::get(
3281 Ty,
APFloat(Ty->getFltSemantics(), NVCanonicalNaN));
3284 return ConstantFP::get(Ty, FTZPreserveSign(
Op->getValueAPF()));
3293 const APFloat &Op1V = Op1->getValueAPF();
3296 if (Op2->getType() != Op1->getType())
3298 const APFloat &Op2V = Op2->getValueAPF();
3300 if (
const auto *ConstrIntr =
3305 switch (IntrinsicID) {
3308 case Intrinsic::experimental_constrained_fadd:
3309 St = Res.
add(Op2V, RM);
3311 case Intrinsic::experimental_constrained_fsub:
3314 case Intrinsic::experimental_constrained_fmul:
3317 case Intrinsic::experimental_constrained_fdiv:
3318 St = Res.
divide(Op2V, RM);
3320 case Intrinsic::experimental_constrained_frem:
3323 case Intrinsic::experimental_constrained_fcmp:
3324 case Intrinsic::experimental_constrained_fcmps:
3325 return evaluateCompare(Op1V, Op2V, ConstrIntr);
3329 return ConstantFP::get(Ty->getContext(), Res);
3333 switch (IntrinsicID) {
3336 case Intrinsic::copysign:
3338 case Intrinsic::minnum:
3339 return ConstantFP::get(Ty->getContext(),
minnum(Op1V, Op2V));
3340 case Intrinsic::maxnum:
3341 return ConstantFP::get(Ty->getContext(),
maxnum(Op1V, Op2V));
3342 case Intrinsic::minimum:
3343 return ConstantFP::get(Ty->getContext(),
minimum(Op1V, Op2V));
3344 case Intrinsic::maximum:
3345 return ConstantFP::get(Ty->getContext(),
maximum(Op1V, Op2V));
3346 case Intrinsic::minimumnum:
3347 return ConstantFP::get(Ty->getContext(),
minimumnum(Op1V, Op2V));
3348 case Intrinsic::maximumnum:
3349 return ConstantFP::get(Ty->getContext(),
maximumnum(Op1V, Op2V));
3351 case Intrinsic::nvvm_fmax_d:
3352 case Intrinsic::nvvm_fmax_f:
3353 case Intrinsic::nvvm_fmax_ftz_f:
3354 case Intrinsic::nvvm_fmax_ftz_nan_f:
3355 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3356 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3357 case Intrinsic::nvvm_fmax_nan_f:
3358 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3359 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3361 case Intrinsic::nvvm_fmin_d:
3362 case Intrinsic::nvvm_fmin_f:
3363 case Intrinsic::nvvm_fmin_ftz_f:
3364 case Intrinsic::nvvm_fmin_ftz_nan_f:
3365 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
3366 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
3367 case Intrinsic::nvvm_fmin_nan_f:
3368 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
3369 case Intrinsic::nvvm_fmin_xorsign_abs_f: {
3371 bool ShouldCanonicalizeNaNs = !(IntrinsicID == Intrinsic::nvvm_fmax_d ||
3372 IntrinsicID == Intrinsic::nvvm_fmin_d);
3377 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3378 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3380 bool XorSign =
false;
3382 XorSign =
A.isNegative() ^
B.isNegative();
3387 bool IsFMax =
false;
3388 switch (IntrinsicID) {
3389 case Intrinsic::nvvm_fmax_d:
3390 case Intrinsic::nvvm_fmax_f:
3391 case Intrinsic::nvvm_fmax_ftz_f:
3392 case Intrinsic::nvvm_fmax_ftz_nan_f:
3393 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3394 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3395 case Intrinsic::nvvm_fmax_nan_f:
3396 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3397 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3403 if (ShouldCanonicalizeNaNs) {
3405 if (
A.isNaN() &&
B.isNaN())
3406 return ConstantFP::get(Ty, NVCanonicalNaN);
3407 else if (IsNaNPropagating && (
A.isNaN() ||
B.isNaN()))
3408 return ConstantFP::get(Ty, NVCanonicalNaN);
3411 if (
A.isNaN() &&
B.isNaN())
3421 return ConstantFP::get(Ty->getContext(), Res);
3424 case Intrinsic::nvvm_add_rm_f:
3425 case Intrinsic::nvvm_add_rn_f:
3426 case Intrinsic::nvvm_add_rp_f:
3427 case Intrinsic::nvvm_add_rz_f:
3428 case Intrinsic::nvvm_add_rm_d:
3429 case Intrinsic::nvvm_add_rn_d:
3430 case Intrinsic::nvvm_add_rp_d:
3431 case Intrinsic::nvvm_add_rz_d:
3432 case Intrinsic::nvvm_add_rm_ftz_f:
3433 case Intrinsic::nvvm_add_rn_ftz_f:
3434 case Intrinsic::nvvm_add_rp_ftz_f:
3435 case Intrinsic::nvvm_add_rz_ftz_f: {
3438 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3439 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3449 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3450 return ConstantFP::get(Ty->getContext(), Res);
3455 case Intrinsic::nvvm_mul_rm_f:
3456 case Intrinsic::nvvm_mul_rn_f:
3457 case Intrinsic::nvvm_mul_rp_f:
3458 case Intrinsic::nvvm_mul_rz_f:
3459 case Intrinsic::nvvm_mul_rm_d:
3460 case Intrinsic::nvvm_mul_rn_d:
3461 case Intrinsic::nvvm_mul_rp_d:
3462 case Intrinsic::nvvm_mul_rz_d:
3463 case Intrinsic::nvvm_mul_rm_ftz_f:
3464 case Intrinsic::nvvm_mul_rn_ftz_f:
3465 case Intrinsic::nvvm_mul_rp_ftz_f:
3466 case Intrinsic::nvvm_mul_rz_ftz_f: {
3469 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3470 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3480 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3481 return ConstantFP::get(Ty->getContext(), Res);
3486 case Intrinsic::nvvm_div_rm_f:
3487 case Intrinsic::nvvm_div_rn_f:
3488 case Intrinsic::nvvm_div_rp_f:
3489 case Intrinsic::nvvm_div_rz_f:
3490 case Intrinsic::nvvm_div_rm_d:
3491 case Intrinsic::nvvm_div_rn_d:
3492 case Intrinsic::nvvm_div_rp_d:
3493 case Intrinsic::nvvm_div_rz_d:
3494 case Intrinsic::nvvm_div_rm_ftz_f:
3495 case Intrinsic::nvvm_div_rn_ftz_f:
3496 case Intrinsic::nvvm_div_rp_ftz_f:
3497 case Intrinsic::nvvm_div_rz_ftz_f: {
3499 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3500 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3508 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3509 return ConstantFP::get(Ty->getContext(), Res);
3515 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
3518 switch (IntrinsicID) {
3521 case Intrinsic::pow:
3522 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
3523 case Intrinsic::amdgcn_fmul_legacy:
3528 return ConstantFP::get(Ty->getContext(), Op1V * Op2V);
3532 switch (IntrinsicID) {
3533 case Intrinsic::ldexp: {
3534 return ConstantFP::get(
3538 case Intrinsic::is_fpclass: {
3551 return ConstantInt::get(Ty, Result);
3553 case Intrinsic::powi: {
3554 int Exp =
static_cast<int>(Op2C->getSExtValue());
3555 switch (Ty->getTypeID()) {
3559 if (Ty->isHalfTy()) {
3564 return ConstantFP::get(Ty->getContext(), Res);
3579 if (Operands[0]->
getType()->isIntegerTy() &&
3580 Operands[1]->
getType()->isIntegerTy()) {
3581 const APInt *C0, *C1;
3582 if (!getConstIntOrUndef(Operands[0], C0) ||
3583 !getConstIntOrUndef(Operands[1], C1))
3586 switch (IntrinsicID) {
3588 case Intrinsic::smax:
3589 case Intrinsic::smin:
3590 case Intrinsic::umax:
3591 case Intrinsic::umin:
3596 return ConstantInt::get(
3602 case Intrinsic::scmp:
3603 case Intrinsic::ucmp:
3605 return ConstantInt::get(Ty, 0);
3608 if (IntrinsicID == Intrinsic::scmp)
3609 Res = C0->
sgt(*C1) ? 1 : C0->
slt(*C1) ? -1 : 0;
3611 Res = C0->
ugt(*C1) ? 1 : C0->
ult(*C1) ? -1 : 0;
3612 return ConstantInt::get(Ty, Res,
true);
3614 case Intrinsic::usub_with_overflow:
3615 case Intrinsic::ssub_with_overflow:
3621 case Intrinsic::uadd_with_overflow:
3622 case Intrinsic::sadd_with_overflow:
3632 case Intrinsic::smul_with_overflow:
3633 case Intrinsic::umul_with_overflow: {
3641 switch (IntrinsicID) {
3643 case Intrinsic::sadd_with_overflow:
3644 Res = C0->
sadd_ov(*C1, Overflow);
3646 case Intrinsic::uadd_with_overflow:
3647 Res = C0->
uadd_ov(*C1, Overflow);
3649 case Intrinsic::ssub_with_overflow:
3650 Res = C0->
ssub_ov(*C1, Overflow);
3652 case Intrinsic::usub_with_overflow:
3653 Res = C0->
usub_ov(*C1, Overflow);
3655 case Intrinsic::smul_with_overflow:
3656 Res = C0->
smul_ov(*C1, Overflow);
3658 case Intrinsic::umul_with_overflow:
3659 Res = C0->
umul_ov(*C1, Overflow);
3663 ConstantInt::get(Ty->getContext(), Res),
3668 case Intrinsic::uadd_sat:
3669 case Intrinsic::sadd_sat:
3674 if (IntrinsicID == Intrinsic::uadd_sat)
3675 return ConstantInt::get(Ty, C0->
uadd_sat(*C1));
3677 return ConstantInt::get(Ty, C0->
sadd_sat(*C1));
3678 case Intrinsic::usub_sat:
3679 case Intrinsic::ssub_sat:
3684 if (IntrinsicID == Intrinsic::usub_sat)
3685 return ConstantInt::get(Ty, C0->
usub_sat(*C1));
3687 return ConstantInt::get(Ty, C0->
ssub_sat(*C1));
3688 case Intrinsic::cttz:
3689 case Intrinsic::ctlz:
3690 assert(C1 &&
"Must be constant int");
3697 if (IntrinsicID == Intrinsic::cttz)
3702 case Intrinsic::abs:
3703 assert(C1 &&
"Must be constant int");
3714 return ConstantInt::get(Ty, C0->
abs());
3715 case Intrinsic::amdgcn_wave_reduce_umin:
3716 case Intrinsic::amdgcn_wave_reduce_umax:
3717 case Intrinsic::amdgcn_wave_reduce_max:
3718 case Intrinsic::amdgcn_wave_reduce_min:
3719 case Intrinsic::amdgcn_wave_reduce_add:
3720 case Intrinsic::amdgcn_wave_reduce_sub:
3721 case Intrinsic::amdgcn_wave_reduce_and:
3722 case Intrinsic::amdgcn_wave_reduce_or:
3723 case Intrinsic::amdgcn_wave_reduce_xor:
3738 switch (IntrinsicID) {
3740 case Intrinsic::x86_avx512_vcvtss2si32:
3741 case Intrinsic::x86_avx512_vcvtss2si64:
3742 case Intrinsic::x86_avx512_vcvtsd2si32:
3743 case Intrinsic::x86_avx512_vcvtsd2si64:
3746 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3750 case Intrinsic::x86_avx512_vcvtss2usi32:
3751 case Intrinsic::x86_avx512_vcvtss2usi64:
3752 case Intrinsic::x86_avx512_vcvtsd2usi32:
3753 case Intrinsic::x86_avx512_vcvtsd2usi64:
3756 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3760 case Intrinsic::x86_avx512_cvttss2si:
3761 case Intrinsic::x86_avx512_cvttss2si64:
3762 case Intrinsic::x86_avx512_cvttsd2si:
3763 case Intrinsic::x86_avx512_cvttsd2si64:
3766 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3770 case Intrinsic::x86_avx512_cvttss2usi:
3771 case Intrinsic::x86_avx512_cvttss2usi64:
3772 case Intrinsic::x86_avx512_cvttsd2usi:
3773 case Intrinsic::x86_avx512_cvttsd2usi64:
3776 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3791 APFloat MA(Sem), SC(Sem), TC(Sem);
3804 if (
S1.isNegative() &&
S1.isNonZero() && !
S1.isNaN()) {
3826 switch (IntrinsicID) {
3829 case Intrinsic::amdgcn_cubeid:
3831 case Intrinsic::amdgcn_cubema:
3833 case Intrinsic::amdgcn_cubesc:
3835 case Intrinsic::amdgcn_cubetc:
3842 const APInt *C0, *C1, *C2;
3843 if (!getConstIntOrUndef(Operands[0], C0) ||
3844 !getConstIntOrUndef(Operands[1], C1) ||
3845 !getConstIntOrUndef(Operands[2], C2))
3852 unsigned NumUndefBytes = 0;
3853 for (
unsigned I = 0;
I < 32;
I += 8) {
3862 const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1;
3866 B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8);
3868 B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff;
3871 Val.insertBits(
B,
I, 8);
3874 if (NumUndefBytes == 4)
3877 return ConstantInt::get(Ty, Val);
3886 assert(Operands.
size() == 3 &&
"Wrong number of operands.");
3891 const APFloat &C1 = Op1->getValueAPF();
3892 const APFloat &C2 = Op2->getValueAPF();
3893 const APFloat &C3 = Op3->getValueAPF();
3899 switch (IntrinsicID) {
3902 case Intrinsic::experimental_constrained_fma:
3903 case Intrinsic::experimental_constrained_fmuladd:
3907 if (mayFoldConstrained(
3909 return ConstantFP::get(Ty->getContext(), Res);
3913 switch (IntrinsicID) {
3915 case Intrinsic::amdgcn_fma_legacy: {
3921 return ConstantFP::get(Ty->getContext(),
APFloat(0.0f) + C3);
3925 case Intrinsic::fma:
3926 case Intrinsic::fmuladd: {
3929 return ConstantFP::get(Ty->getContext(), V);
3932 case Intrinsic::nvvm_fma_rm_f:
3933 case Intrinsic::nvvm_fma_rn_f:
3934 case Intrinsic::nvvm_fma_rp_f:
3935 case Intrinsic::nvvm_fma_rz_f:
3936 case Intrinsic::nvvm_fma_rm_d:
3937 case Intrinsic::nvvm_fma_rn_d:
3938 case Intrinsic::nvvm_fma_rp_d:
3939 case Intrinsic::nvvm_fma_rz_d:
3940 case Intrinsic::nvvm_fma_rm_ftz_f:
3941 case Intrinsic::nvvm_fma_rn_ftz_f:
3942 case Intrinsic::nvvm_fma_rp_ftz_f:
3943 case Intrinsic::nvvm_fma_rz_ftz_f: {
3945 APFloat A = IsFTZ ? FTZPreserveSign(C1) : C1;
3946 APFloat B = IsFTZ ? FTZPreserveSign(C2) : C2;
3947 APFloat C = IsFTZ ? FTZPreserveSign(C3) : C3;
3957 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3958 return ConstantFP::get(Ty->getContext(), Res);
3963 case Intrinsic::amdgcn_cubeid:
3964 case Intrinsic::amdgcn_cubema:
3965 case Intrinsic::amdgcn_cubesc:
3966 case Intrinsic::amdgcn_cubetc: {
3967 APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3);
3968 return ConstantFP::get(Ty->getContext(), V);
3975 if (IntrinsicID == Intrinsic::smul_fix ||
3976 IntrinsicID == Intrinsic::smul_fix_sat) {
3977 const APInt *C0, *C1;
3978 if (!getConstIntOrUndef(Operands[0], C0) ||
3979 !getConstIntOrUndef(Operands[1], C1))
3995 assert(Scale < Width &&
"Illegal scale.");
3996 unsigned ExtendedWidth = Width * 2;
3998 (C0->
sext(ExtendedWidth) * C1->
sext(ExtendedWidth)).
ashr(Scale);
3999 if (IntrinsicID == Intrinsic::smul_fix_sat) {
4005 return ConstantInt::get(Ty->getContext(), Product.
sextOrTrunc(Width));
4008 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
4009 const APInt *C0, *C1, *C2;
4010 if (!getConstIntOrUndef(Operands[0], C0) ||
4011 !getConstIntOrUndef(Operands[1], C1) ||
4012 !getConstIntOrUndef(Operands[2], C2))
4015 bool IsRight = IntrinsicID == Intrinsic::fshr;
4017 return Operands[IsRight ? 1 : 0];
4026 return Operands[IsRight ? 1 : 0];
4029 unsigned LshrAmt = IsRight ? ShAmt :
BitWidth - ShAmt;
4030 unsigned ShlAmt = !IsRight ? ShAmt :
BitWidth - ShAmt;
4032 return ConstantInt::get(Ty, C1->
lshr(LshrAmt));
4034 return ConstantInt::get(Ty, C0->
shl(ShlAmt));
4035 return ConstantInt::get(Ty, C0->
shl(ShlAmt) | C1->
lshr(LshrAmt));
4038 if (IntrinsicID == Intrinsic::amdgcn_perm)
4039 return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty);
4055 if (Operands.
size() == 1)
4056 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI,
Call);
4058 if (Operands.
size() == 2) {
4060 ConstantFoldLibCall2(Name, Ty, Operands, TLI)) {
4061 return FoldedLibCall;
4063 return ConstantFoldIntrinsicCall2(IntrinsicID, Ty, Operands,
Call);
4066 if (Operands.
size() == 3)
4067 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI,
Call);
4072static Constant *ConstantFoldFixedVectorCall(
4080 switch (IntrinsicID) {
4081 case Intrinsic::masked_load: {
4082 auto *SrcPtr = Operands[0];
4083 auto *
Mask = Operands[1];
4084 auto *Passthru = Operands[2];
4090 auto *MaskElt =
Mask->getAggregateElement(
I);
4093 auto *PassthruElt = Passthru->getAggregateElement(
I);
4103 if (MaskElt->isNullValue()) {
4107 }
else if (MaskElt->isOneValue()) {
4119 case Intrinsic::arm_mve_vctp8:
4120 case Intrinsic::arm_mve_vctp16:
4121 case Intrinsic::arm_mve_vctp32:
4122 case Intrinsic::arm_mve_vctp64: {
4128 for (
unsigned i = 0; i < Lanes; i++) {
4138 case Intrinsic::get_active_lane_mask: {
4144 uint64_t Limit = Op1->getZExtValue();
4147 for (
unsigned i = 0; i < Lanes; i++) {
4148 if (
Base + i < Limit)
4157 case Intrinsic::vector_extract: {
4164 unsigned VecNumElements =
4166 unsigned StartingIndex = Idx->getZExtValue();
4169 if (NumElements == VecNumElements && StartingIndex == 0)
4172 for (
unsigned I = StartingIndex,
E = StartingIndex + NumElements;
I <
E;
4177 Result[
I - StartingIndex] = Elt;
4182 case Intrinsic::vector_insert: {
4189 unsigned SubVecNumElements =
4191 unsigned VecNumElements =
4193 unsigned IdxN = Idx->getZExtValue();
4195 if (SubVecNumElements == VecNumElements && IdxN == 0)
4198 for (
unsigned I = 0;
I < VecNumElements; ++
I) {
4200 if (
I < IdxN + SubVecNumElements)
4210 case Intrinsic::vector_interleave2: {
4211 unsigned NumElements =
4213 for (
unsigned I = 0;
I < NumElements; ++
I) {
4214 Constant *Elt0 = Operands[0]->getAggregateElement(
I);
4215 Constant *Elt1 = Operands[1]->getAggregateElement(
I);
4223 case Intrinsic::wasm_dot: {
4224 unsigned NumElements =
4228 "wasm dot takes i16x8 and produces i32x4");
4229 assert(Ty->isIntegerTy());
4230 int32_t MulVector[8];
4232 for (
unsigned I = 0;
I < NumElements; ++
I) {
4240 for (
unsigned I = 0;
I <
Result.size();
I++) {
4241 int64_t IAdd = (int64_t)MulVector[
I * 2] + (int64_t)MulVector[
I * 2 + 1];
4242 Result[
I] = ConstantInt::get(Ty, IAdd);
4253 for (
unsigned J = 0, JE = Operands.
size(); J != JE; ++J) {
4256 Lane[J] = Operands[J];
4260 Constant *Agg = Operands[J]->getAggregateElement(
I);
4269 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI,
Call);
4278static Constant *ConstantFoldScalableVectorCall(
4282 switch (IntrinsicID) {
4283 case Intrinsic::aarch64_sve_convert_from_svbool: {
4285 if (!Src || !Src->isNullValue())
4290 case Intrinsic::get_active_lane_mask: {
4293 if (Op0 && Op1 && Op0->getValue().uge(Op1->getValue()))
4319 Constant *Folded = ConstantFoldScalarCall(
4326static std::pair<Constant *, Constant *>
4335 const APFloat &U = ConstFP->getValueAPF();
4338 Constant *Result0 = ConstantFP::get(ConstFP->getType(), FrexpMant);
4345 return {Result0, Result1};
4355 switch (IntrinsicID) {
4356 case Intrinsic::frexp: {
4364 for (
unsigned I = 0,
E = FVTy0->getNumElements();
I !=
E; ++
I) {
4365 Constant *Lane = Operands[0]->getAggregateElement(
I);
4366 std::tie(Results0[
I], Results1[
I]) =
4367 ConstantFoldScalarFrexpCall(Lane, Ty1);
4376 auto [Result0, Result1] = ConstantFoldScalarFrexpCall(Operands[0], Ty1);
4381 case Intrinsic::sincos: {
4385 auto ConstantFoldScalarSincosCall =
4386 [&](
Constant *
Op) -> std::pair<Constant *, Constant *> {
4388 ConstantFoldScalarCall(Name, Intrinsic::sin, TyScalar,
Op, TLI,
Call);
4390 ConstantFoldScalarCall(Name, Intrinsic::cos, TyScalar,
Op, TLI,
Call);
4391 return std::make_pair(SinResult, CosResult);
4399 Constant *Lane = Operands[0]->getAggregateElement(
I);
4400 std::tie(SinResults[
I], CosResults[
I]) =
4401 ConstantFoldScalarSincosCall(Lane);
4402 if (!SinResults[
I] || !CosResults[
I])
4410 auto [SinResult, CosResult] = ConstantFoldScalarSincosCall(Operands[0]);
4411 if (!SinResult || !CosResult)
4415 case Intrinsic::vector_deinterleave2: {
4416 auto *Vec = Operands[0];
4428 unsigned NumElements = VecTy->getElementCount().getFixedValue() / 2;
4430 for (
unsigned I = 0;
I < NumElements; ++
I) {
4444 return ConstantFoldScalarCall(Name, IntrinsicID, StTy, Operands, TLI,
Call);
4460 return ConstantFoldIntrinsicCall2(
ID, Ty, {LHS, RHS},
Call);
4466 bool AllowNonDeterministic) {
4467 if (
Call->isNoBuiltin())
4484 Type *Ty =
F->getReturnType();
4485 if (!AllowNonDeterministic && Ty->isFPOrFPVectorTy())
4490 return ConstantFoldFixedVectorCall(
4491 Name, IID, FVTy, Operands,
F->getDataLayout(), TLI,
Call);
4494 return ConstantFoldScalableVectorCall(
4495 Name, IID, SVTy, Operands,
F->getDataLayout(), TLI,
Call);
4498 return ConstantFoldStructCall(Name, IID, StTy, Operands,
4499 F->getDataLayout(), TLI,
Call);
4504 return ConstantFoldScalarCall(Name, IID, Ty, Operands, TLI,
Call);
4511 if (
Call->isNoBuiltin() ||
Call->isStrictFP())
4521 if (
Call->arg_size() == 1) {
4531 case LibFunc_log10l:
4533 case LibFunc_log10f:
4534 return Op.isNaN() || (!
Op.isZero() && !
Op.isNegative());
4537 return !
Op.isNaN() && !
Op.isZero() && !
Op.isInfinity();
4543 if (OpC->getType()->isDoubleTy())
4545 if (OpC->getType()->isFloatTy())
4553 if (OpC->getType()->isDoubleTy())
4555 if (OpC->getType()->isFloatTy())
4565 return !
Op.isInfinity();
4569 case LibFunc_tanf: {
4572 Type *Ty = OpC->getType();
4573 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy())
4574 return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) !=
nullptr;
4600 if (OpC->getType()->isDoubleTy())
4602 if (OpC->getType()->isFloatTy())
4609 return Op.isNaN() ||
Op.isZero() || !
Op.isNegative();
4619 if (
Call->arg_size() == 2) {
4629 case LibFunc_powf: {
4633 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
4635 return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) !=
nullptr;
4643 case LibFunc_remainderl:
4644 case LibFunc_remainder:
4645 case LibFunc_remainderf:
4650 case LibFunc_atan2f:
4651 case LibFunc_atan2l:
4671 case Instruction::BitCast:
4674 case Instruction::Trunc: {
4682 Flags->NSW = ZExtC == SExtC;
4686 case Instruction::SExt:
4687 case Instruction::ZExt: {
4691 if (!CastInvC || CastInvC !=
C)
4693 if (Flags && CastOp == Instruction::ZExt) {
4697 Flags->NNeg = CastInvC == SExtInvC;
4718void TargetFolder::anchor() {}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static Constant * FoldBitCast(Constant *V, Type *DestTy)
static ConstantFP * flushDenormalConstant(Type *Ty, const APFloat &APF, DenormalMode::DenormalModeKind Mode)
Constant * getConstantAtOffset(Constant *Base, APInt Offset, const DataLayout &DL)
If this Offset points exactly to the start of an aggregate element, return that element,...
static cl::opt< bool > DisableFPCallFolding("disable-fp-call-folding", cl::desc("Disable constant-folding of FP intrinsics and libcalls."), cl::init(false), cl::Hidden)
static ConstantFP * flushDenormalConstantFP(ConstantFP *CFP, const Instruction *Inst, bool IsOutput)
static DenormalMode getInstrDenormalMode(const Instruction *CtxI, Type *Ty)
Return the denormal mode that can be assumed when executing a floating point operation at CtxI.
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseMap class.
amode Optimize addressing mode
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static bool InRange(int64_t Value, unsigned short Shift, int LBound, int HBound)
This file contains the definitions of the enumerations and flags associated with NVVM Intrinsics,...
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
static constexpr roundingMode rmTowardZero
llvm::RoundingMode roundingMode
IEEE-754R 4.3: Rounding-direction attributes.
static const fltSemantics & IEEEdouble()
static constexpr roundingMode rmTowardNegative
static constexpr roundingMode rmNearestTiesToEven
static constexpr roundingMode rmTowardPositive
static const fltSemantics & IEEEhalf()
static constexpr roundingMode rmNearestTiesToAway
opStatus
IEEE-754R 7: Default exception handling.
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
opStatus divide(const APFloat &RHS, roundingMode RM)
void copySign(const APFloat &RHS)
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
opStatus subtract(const APFloat &RHS, roundingMode RM)
LLVM_ABI double convertToDouble() const
Converts this APFloat to host double value.
bool isPosInfinity() const
opStatus add(const APFloat &RHS, roundingMode RM)
const fltSemantics & getSemantics() const
static APFloat getOne(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative One.
opStatus multiply(const APFloat &RHS, roundingMode RM)
LLVM_ABI float convertToFloat() const
Converts this APFloat to host float value.
opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, roundingMode RM)
APInt bitcastToAPInt() const
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
opStatus mod(const APFloat &RHS)
bool isNegInfinity() const
opStatus roundToIntegral(roundingMode RM)
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Class for arbitrary precision integers.
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt usub_sat(const APInt &RHS) const
bool isMinSignedValue() const
Determine if this is the smallest signed value.
uint64_t getZExtValue() const
Get zero extended value.
LLVM_ABI uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
APInt abs() const
Get the absolute value.
LLVM_ABI APInt sadd_sat(const APInt &RHS) const
bool sgt(const APInt &RHS) const
Signed greater than comparison.
LLVM_ABI APInt usub_ov(const APInt &RHS, bool &Overflow) const
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
LLVM_ABI APInt sadd_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt uadd_ov(const APInt &RHS, bool &Overflow) const
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
LLVM_ABI APInt smul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
APInt shl(unsigned shiftAmt) const
Left-shift function.
bool slt(const APInt &RHS) const
Signed less than comparison.
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
LLVM_ABI APInt ssub_ov(const APInt &RHS, bool &Overflow) const
bool isOne() const
Determine if this is a value of 1.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
LLVM_ABI APInt ssub_sat(const APInt &RHS) const
An arbitrary precision integer that knows its signedness.
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
static LLVM_ABI Instruction::CastOps getCastOpcode(const Value *Val, bool SrcIsSigned, Type *Ty, bool DstIsSigned)
Returns the opcode necessary to cast Val into Ty using usual casting rules.
static LLVM_ABI unsigned isEliminableCastPair(Instruction::CastOps firstOpcode, Instruction::CastOps secondOpcode, Type *SrcTy, Type *MidTy, Type *DstTy, const DataLayout *DL)
Determine how a pair of casts can be eliminated, if they can be at all.
static LLVM_ABI bool castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy)
This method can be used to determine if a cast from SrcTy to DstTy using Opcode op is valid or not.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
static bool isFPPredicate(Predicate P)
static Constant * get(LLVMContext &Context, ArrayRef< ElementTy > Elts)
get() constructor - Return a constant with array type with an element count and element type matching...
static LLVM_ABI Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getExtractElement(Constant *Vec, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI bool isDesirableCastOp(unsigned Opcode)
Whether creating a constant expression for this cast is desirable.
static LLVM_ABI Constant * getCast(unsigned ops, Constant *C, Type *Ty, bool OnlyIfReduced=false)
Convenience function for getting a Cast operation.
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI Constant * getShuffleVector(Constant *V1, Constant *V2, ArrayRef< int > Mask, Type *OnlyIfReducedTy=nullptr)
static bool isSupportedGetElementPtr(const Type *SrcElemTy)
Whether creating a constant expression for this getelementptr type is supported.
static LLVM_ABI Constant * get(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags=0, Type *OnlyIfReducedTy=nullptr)
get - Return a binary or shift operator constant expression, folding if possible.
static LLVM_ABI bool isDesirableBinOp(unsigned Opcode)
Whether creating a constant expression for this binary operator is desirable.
static Constant * getGetElementPtr(Type *Ty, Constant *C, ArrayRef< Constant * > IdxList, GEPNoWrapFlags NW=GEPNoWrapFlags::none(), std::optional< ConstantRange > InRange=std::nullopt, Type *OnlyIfReducedTy=nullptr)
Getelementptr form.
static LLVM_ABI Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
ConstantFP - Floating Point Values [float, double].
const APFloat & getValueAPF() const
static LLVM_ABI Constant * getZero(Type *Ty, bool Negative=false)
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
static LLVM_ABI Constant * get(StructType *T, ArrayRef< Constant * > V)
static LLVM_ABI Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isZeroValue() const
Return true if the value is negative zero or null value.
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Constrained floating point compare intrinsics.
This is the common base class for constrained floating point intrinsics.
LLVM_ABI std::optional< fp::ExceptionBehavior > getExceptionBehavior() const
LLVM_ABI std::optional< RoundingMode > getRoundingMode() const
Wrapper for a function that represents a value that functionally represents the original function.
A parsed version of the target data layout string in and methods for querying it.
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
static LLVM_ABI bool compare(const APFloat &LHS, const APFloat &RHS, FCmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
This provides a helper for copying FMF from an instruction or setting specified flags.
Class to represent fixed width SIMD vectors.
unsigned getNumElements() const
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags inBounds()
GEPNoWrapFlags withoutNoUnsignedSignedWrap() const
static GEPNoWrapFlags noUnsignedWrap()
bool hasNoUnsignedSignedWrap() const
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
PointerType * getType() const
Global values are always pointers.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this global belongs to.
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
bool isEquality() const
Return true if this predicate is either EQ or NE.
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
This is an important class for using LLVM in a threaded context.
static APInt getSaturationPoint(Intrinsic::ID ID, unsigned numBits)
Min/max intrinsics are monotonic, they operate on a fixed-bitwidth values, so there is a certain thre...
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Class to represent scalable SIMD vectors.
void push_back(const T &Elt)
pointer data()
Return a pointer to the vector's buffer, even if empty().
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
LLVM_ABI unsigned getElementContainingOffset(uint64_t FixedOffset) const
Given a valid byte offset into the structure, returns the structure index that contains it.
TypeSize getElementOffset(unsigned Idx) const
Class to represent struct types.
Provides information about what library functions are available for the current target.
bool has(LibFunc F) const
Tests whether a library function is available.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
@ HalfTyID
16-bit floating point type
@ FloatTyID
32-bit floating point type
@ DoubleTyID
64-bit floating point type
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
static LLVM_ABI IntegerType * getInt16Ty(LLVMContext &C)
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
bool isX86_AMXTy() const
Return true if this is X86 AMX.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Type * getContainedType(unsigned i) const
This method is used to implement the type iterator (defined at the end of the file).
LLVM_ABI const fltSemantics & getFltSemantics() const
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
const ParentTy * getParent() const
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
const APInt & smin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be signed.
const APInt & smax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be signed.
const APInt & umin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be unsigned.
const APInt & umax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be unsigned.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
@ CE
Windows NT (Windows on ARM)
initializer< Ty > init(const Ty &Val)
@ ebStrict
This corresponds to "fpexcept.strict".
@ ebIgnore
This corresponds to "fpexcept.ignore".
APFloat::roundingMode GetFMARoundingMode(Intrinsic::ID IntrinsicID)
DenormalMode GetNVVMDenormMode(bool ShouldFTZ)
bool FPToIntegerIntrinsicNaNZero(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFDivRoundingMode(Intrinsic::ID IntrinsicID)
bool FPToIntegerIntrinsicResultIsSigned(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFPToIntegerRoundingMode(Intrinsic::ID IntrinsicID)
bool RCPShouldFTZ(Intrinsic::ID IntrinsicID)
bool FPToIntegerIntrinsicShouldFTZ(Intrinsic::ID IntrinsicID)
bool FDivShouldFTZ(Intrinsic::ID IntrinsicID)
bool FAddShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMinFMaxIsXorSignAbs(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFMulRoundingMode(Intrinsic::ID IntrinsicID)
bool UnaryMathIntrinsicShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMinFMaxShouldFTZ(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFAddRoundingMode(Intrinsic::ID IntrinsicID)
bool FMAShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMulShouldFTZ(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetRCPRoundingMode(Intrinsic::ID IntrinsicID)
bool FMinFMaxPropagatesNaNs(Intrinsic::ID IntrinsicID)
NodeAddr< FuncNode * > Func
LLVM_ABI std::error_code status(const Twine &path, file_status &result, bool follow=true)
Get file status as if by POSIX stat().
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI Constant * ConstantFoldBinaryIntrinsic(Intrinsic::ID ID, Constant *LHS, Constant *RHS, Type *Ty, Instruction *FMFSource)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Constant * ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, const DataLayout &DL)
ConstantFoldLoadThroughBitcast - try to cast constant to destination type returning null if unsuccess...
static double log2(double V)
LLVM_ABI Constant * ConstantFoldSelectInstruction(Constant *Cond, Constant *V1, Constant *V2)
Attempt to constant fold a select instruction with the specified operands.
LLVM_ABI Constant * ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL, const Instruction *I, bool AllowNonDeterministic=true)
Attempt to constant fold a floating point binary operation with the specified operands,...
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
LLVM_ABI bool canConstantFoldCallTo(const CallBase *Call, const Function *F)
canConstantFoldCallTo - Return true if its even possible to fold a call to the specified function.
unsigned getPointerAddressSpace(const Type *T)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI Constant * ConstantFoldInstruction(const Instruction *I, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstruction - Try to constant fold the specified instruction.
APFloat abs(APFloat X)
Returns the absolute value of the argument.
LLVM_ABI Constant * ConstantFoldCompareInstruction(CmpInst::Predicate Predicate, Constant *C1, Constant *C2)
LLVM_ABI Constant * ConstantFoldUnaryInstruction(unsigned Opcode, Constant *V)
LLVM_ABI bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, APInt &Offset, const DataLayout &DL, DSOLocalEquivalent **DSOEquiv=nullptr)
If this constant is a constant offset from a global, return the global and the constant.
LLVM_ABI bool isMathLibCallNoop(const CallBase *Call, const TargetLibraryInfo *TLI)
Check whether the given call has no side-effects.
LLVM_ABI Constant * ReadByteArrayFromGlobal(const GlobalVariable *GV, uint64_t Offset)
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
int ilogb(const APFloat &Arg)
Returns the exponent of the internal representation of the APFloat.
bool isa_and_nonnull(const Y &Val)
LLVM_ABI Constant * ConstantFoldCall(const CallBase *Call, Function *F, ArrayRef< Constant * > Operands, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldCall - Attempt to constant fold a call to the specified function with the specified argum...
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
LLVM_ABI Constant * ConstantFoldExtractValueInstruction(Constant *Agg, ArrayRef< unsigned > Idxs)
Attempt to constant fold an extractvalue instruction with the specified operands and indices.
LLVM_ABI Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Fold the constant using the specified DataLayout.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
LLVM_ABI Constant * ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty, const DataLayout &DL)
If C is a uniform value where all bits are the same (either all zero, all ones, all undef or all pois...
LLVM_ABI Constant * ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, const DataLayout &DL)
Attempt to constant fold a unary operation with the specified operand.
LLVM_ABI Constant * FlushFPConstant(Constant *Operand, const Instruction *I, bool IsOutput)
Attempt to flush float point constant according to denormal mode set in the instruction's parent func...
LLVM_ABI Constant * getLosslessUnsignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_READONLY APFloat minimumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimumNumber semantics.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM)
Returns: X * 2^Exp for integral exponents.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI Constant * getLosslessSignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI Constant * ConstantFoldLoadFromConst(Constant *C, Type *Ty, const APInt &Offset, const DataLayout &DL)
Extract value of C at the given Offset reinterpreted as Ty.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool intrinsicPropagatesPoison(Intrinsic::ID IID)
Return whether this intrinsic propagates poison for all operands.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
MutableArrayRef(T &OneElt) -> MutableArrayRef< T >
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
@ Sub
Subtraction of integers.
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
DWARFExpression::Operation Op
RoundingMode
Rounding mode.
@ NearestTiesToEven
roundTiesToEven.
@ Dynamic
Denotes mode unknown at compile time.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
constexpr unsigned BitWidth
LLVM_ABI Constant * getLosslessInvCast(Constant *C, Type *InvCastTo, unsigned CastOp, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
Try to cast C to InvC losslessly, satisfying CastOp(InvC) equals C, or CastOp(InvC) is a refined valu...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI Constant * ConstantFoldCastInstruction(unsigned opcode, Constant *V, Type *DestTy)
LLVM_ABI Constant * ConstantFoldInsertValueInstruction(Constant *Agg, Constant *Val, ArrayRef< unsigned > Idxs)
Attempt to constant fold an insertvalue instruction with the specified operands and indices.
LLVM_ABI Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...
LLVM_ABI Constant * ConstantFoldInstOperands(const Instruction *I, ArrayRef< Constant * > Ops, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldInstOperands - Attempt to constant fold an instruction with the specified operands.
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
LLVM_READONLY APFloat maximumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximumNumber semantics.
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
LLVM_ABI Constant * ConstantFoldIntegerCast(Constant *C, Type *DestTy, bool IsSigned, const DataLayout &DL)
Constant fold a zext, sext or trunc, depending on IsSigned and whether the DestTy is wider or narrowe...
LLVM_ABI bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
LLVM_ABI Constant * ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, Constant *V2)
Represent subnormal handling kind for floating point instruction inputs and outputs.
DenormalModeKind Input
Denormal treatment kind for floating point instruction inputs in the default floating-point environme...
DenormalModeKind
Represent handled modes for denormal (aka subnormal) modes in the floating point environment.
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
@ PositiveZero
Denormals are flushed to positive zero.
@ Dynamic
Denormals have unknown treatment.
@ IEEE
IEEE-754 denormal numbers preserved.
DenormalModeKind Output
Denormal flushing mode for floating point instruction results in the default floating point environme...
static constexpr DenormalMode getDynamic()
static constexpr DenormalMode getIEEE()
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
bool isConstant() const
Returns true if we know the value of all bits.
const APInt & getConstant() const
Returns the value when all bits have a known value.