LLVM 22.0.0git
ARMTargetParser.cpp
Go to the documentation of this file.
1//===-- ARMTargetParser - Parser for ARM target features --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements a target parser to recognise ARM hardware features
10// such as FPU/CPU/ARCH/extensions and specific support such as HWDIV.
11//
12//===----------------------------------------------------------------------===//
13
16#include "llvm/Support/Format.h"
20#include <cctype>
21
22using namespace llvm;
23
25 return StringSwitch<StringRef>(HWDiv)
26 .Case("thumb,arm", "arm,thumb")
27 .Default(HWDiv);
28}
29
30// Allows partial match, ex. "v7a" matches "armv7a".
32 Arch = getCanonicalArchName(Arch);
33 StringRef Syn = getArchSynonym(Arch);
34 for (const auto &A : ARMArchNames) {
35 if (A.Name.ends_with(Syn))
36 return A.ID;
37 }
38 return ArchKind::INVALID;
39}
40
41// Version number (ex. v7 = 7).
43 Arch = getCanonicalArchName(Arch);
44 switch (parseArch(Arch)) {
45 case ArchKind::ARMV4:
46 case ArchKind::ARMV4T:
47 return 4;
48 case ArchKind::ARMV5T:
49 case ArchKind::ARMV5TE:
50 case ArchKind::IWMMXT:
51 case ArchKind::IWMMXT2:
52 case ArchKind::XSCALE:
53 case ArchKind::ARMV5TEJ:
54 return 5;
55 case ArchKind::ARMV6:
56 case ArchKind::ARMV6K:
57 case ArchKind::ARMV6T2:
58 case ArchKind::ARMV6KZ:
59 case ArchKind::ARMV6M:
60 return 6;
61 case ArchKind::ARMV7A:
62 case ArchKind::ARMV7VE:
63 case ArchKind::ARMV7R:
64 case ArchKind::ARMV7M:
65 case ArchKind::ARMV7S:
66 case ArchKind::ARMV7EM:
67 case ArchKind::ARMV7K:
68 return 7;
69 case ArchKind::ARMV8A:
70 case ArchKind::ARMV8_1A:
71 case ArchKind::ARMV8_2A:
72 case ArchKind::ARMV8_3A:
73 case ArchKind::ARMV8_4A:
74 case ArchKind::ARMV8_5A:
75 case ArchKind::ARMV8_6A:
76 case ArchKind::ARMV8_7A:
77 case ArchKind::ARMV8_8A:
78 case ArchKind::ARMV8_9A:
79 case ArchKind::ARMV8R:
80 case ArchKind::ARMV8MBaseline:
81 case ArchKind::ARMV8MMainline:
82 case ArchKind::ARMV8_1MMainline:
83 return 8;
84 case ArchKind::ARMV9A:
85 case ArchKind::ARMV9_1A:
86 case ArchKind::ARMV9_2A:
87 case ArchKind::ARMV9_3A:
88 case ArchKind::ARMV9_4A:
89 case ArchKind::ARMV9_5A:
90 case ArchKind::ARMV9_6A:
91 case ArchKind::ARMV9_7A:
92 return 9;
93 case ArchKind::INVALID:
94 return 0;
95 }
96 llvm_unreachable("Unhandled architecture");
97}
98
100 switch (AK) {
101 case ARM::ArchKind::ARMV6M:
102 case ARM::ArchKind::ARMV7M:
103 case ARM::ArchKind::ARMV7EM:
104 case ARM::ArchKind::ARMV8MMainline:
105 case ARM::ArchKind::ARMV8MBaseline:
106 case ARM::ArchKind::ARMV8_1MMainline:
107 return ARM::ProfileKind::M;
108 case ARM::ArchKind::ARMV7R:
109 case ARM::ArchKind::ARMV8R:
110 return ARM::ProfileKind::R;
111 case ARM::ArchKind::ARMV7A:
112 case ARM::ArchKind::ARMV7VE:
113 case ARM::ArchKind::ARMV7K:
114 case ARM::ArchKind::ARMV8A:
115 case ARM::ArchKind::ARMV8_1A:
116 case ARM::ArchKind::ARMV8_2A:
117 case ARM::ArchKind::ARMV8_3A:
118 case ARM::ArchKind::ARMV8_4A:
119 case ARM::ArchKind::ARMV8_5A:
120 case ARM::ArchKind::ARMV8_6A:
121 case ARM::ArchKind::ARMV8_7A:
122 case ARM::ArchKind::ARMV8_8A:
123 case ARM::ArchKind::ARMV8_9A:
124 case ARM::ArchKind::ARMV9A:
125 case ARM::ArchKind::ARMV9_1A:
126 case ARM::ArchKind::ARMV9_2A:
127 case ARM::ArchKind::ARMV9_3A:
128 case ARM::ArchKind::ARMV9_4A:
129 case ARM::ArchKind::ARMV9_5A:
130 case ARM::ArchKind::ARMV9_6A:
131 case ARM::ArchKind::ARMV9_7A:
132 return ARM::ProfileKind::A;
133 case ARM::ArchKind::ARMV4:
134 case ARM::ArchKind::ARMV4T:
135 case ARM::ArchKind::ARMV5T:
136 case ARM::ArchKind::ARMV5TE:
137 case ARM::ArchKind::ARMV5TEJ:
138 case ARM::ArchKind::ARMV6:
139 case ARM::ArchKind::ARMV6K:
140 case ARM::ArchKind::ARMV6T2:
141 case ARM::ArchKind::ARMV6KZ:
142 case ARM::ArchKind::ARMV7S:
143 case ARM::ArchKind::IWMMXT:
144 case ARM::ArchKind::IWMMXT2:
145 case ARM::ArchKind::XSCALE:
146 case ARM::ArchKind::INVALID:
148 }
149 llvm_unreachable("Unhandled architecture");
150}
151
152// Profile A/R/M
157
159 std::vector<StringRef> &Features) {
160
161 if (FPUKind >= FK_LAST || FPUKind == FK_INVALID)
162 return false;
163
164 static const struct FPUFeatureNameInfo {
165 const char *PlusName, *MinusName;
166 FPUVersion MinVersion;
167 FPURestriction MaxRestriction;
168 } FPUFeatureInfoList[] = {
169 // We have to specify the + and - versions of the name in full so
170 // that we can return them as static StringRefs.
171 //
172 // Also, the SubtargetFeatures ending in just "sp" are listed here
173 // under FPURestriction::None, which is the only FPURestriction in
174 // which they would be valid (since FPURestriction::SP doesn't
175 // exist).
176 {"+vfp2", "-vfp2", FPUVersion::VFPV2, FPURestriction::D16},
177 {"+vfp2sp", "-vfp2sp", FPUVersion::VFPV2, FPURestriction::SP_D16},
178 {"+vfp3", "-vfp3", FPUVersion::VFPV3, FPURestriction::None},
179 {"+vfp3d16", "-vfp3d16", FPUVersion::VFPV3, FPURestriction::D16},
180 {"+vfp3d16sp", "-vfp3d16sp", FPUVersion::VFPV3, FPURestriction::SP_D16},
181 {"+vfp3sp", "-vfp3sp", FPUVersion::VFPV3, FPURestriction::None},
183 {"+vfp4", "-vfp4", FPUVersion::VFPV4, FPURestriction::None},
184 {"+vfp4d16", "-vfp4d16", FPUVersion::VFPV4, FPURestriction::D16},
185 {"+vfp4d16sp", "-vfp4d16sp", FPUVersion::VFPV4, FPURestriction::SP_D16},
186 {"+vfp4sp", "-vfp4sp", FPUVersion::VFPV4, FPURestriction::None},
187 {"+fp-armv8", "-fp-armv8", FPUVersion::VFPV5, FPURestriction::None},
188 {"+fp-armv8d16", "-fp-armv8d16", FPUVersion::VFPV5, FPURestriction::D16},
189 {"+fp-armv8d16sp", "-fp-armv8d16sp", FPUVersion::VFPV5, FPURestriction::SP_D16},
190 {"+fp-armv8sp", "-fp-armv8sp", FPUVersion::VFPV5, FPURestriction::None},
191 {"+fullfp16", "-fullfp16", FPUVersion::VFPV5_FULLFP16, FPURestriction::SP_D16},
192 {"+fp64", "-fp64", FPUVersion::VFPV2, FPURestriction::D16},
193 {"+d32", "-d32", FPUVersion::VFPV3, FPURestriction::None},
194 };
195
196 for (const auto &Info: FPUFeatureInfoList) {
197 if (FPUNames[FPUKind].FPUVer >= Info.MinVersion &&
198 FPUNames[FPUKind].Restriction <= Info.MaxRestriction)
199 Features.push_back(Info.PlusName);
200 else
201 Features.push_back(Info.MinusName);
202 }
203
204 static const struct NeonFeatureNameInfo {
205 const char *PlusName, *MinusName;
206 NeonSupportLevel MinSupportLevel;
207 } NeonFeatureInfoList[] = {
208 {"+neon", "-neon", NeonSupportLevel::Neon},
209 {"+sha2", "-sha2", NeonSupportLevel::Crypto},
210 {"+aes", "-aes", NeonSupportLevel::Crypto},
211 };
212
213 for (const auto &Info: NeonFeatureInfoList) {
214 if (FPUNames[FPUKind].NeonSupport >= Info.MinSupportLevel)
215 Features.push_back(Info.PlusName);
216 else
217 Features.push_back(Info.MinusName);
218 }
219
220 return true;
221}
222
224 StringRef Syn = getFPUSynonym(FPU);
225 for (const auto &F : FPUNames) {
226 if (Syn == F.Name)
227 return F.ID;
228 }
229 return FK_INVALID;
230}
231
237
239 return StringSwitch<StringRef>(FPU)
240 .Cases({"fpa", "fpe2", "fpe3", "maverick"}, "invalid") // Unsupported
241 .Case("vfp2", "vfpv2")
242 .Case("vfp3", "vfpv3")
243 .Case("vfp4", "vfpv4")
244 .Case("vfp3-d16", "vfpv3-d16")
245 .Case("vfp4-d16", "vfpv4-d16")
246 .Cases({"fp4-sp-d16", "vfpv4-sp-d16"}, "fpv4-sp-d16")
247 .Cases({"fp4-dp-d16", "fpv4-dp-d16"}, "vfpv4-d16")
248 .Case("fp5-sp-d16", "fpv5-sp-d16")
249 .Cases({"fp5-dp-d16", "fpv5-dp-d16"}, "fpv5-d16")
250 // FIXME: Clang uses it, but it's bogus, since neon defaults to vfpv3.
251 .Case("neon-vfpv3", "neon")
252 .Default(FPU);
253}
254
256 if (FPUKind >= FK_LAST)
257 return StringRef();
258 return FPUNames[FPUKind].Name;
259}
260
262 if (FPUKind >= FK_LAST)
263 return FPUVersion::NONE;
264 return FPUNames[FPUKind].FPUVer;
265}
266
268 if (FPUKind >= FK_LAST)
270 return FPUNames[FPUKind].Restriction;
271}
272
274 if (CPU == "generic")
275 return ARM::ARMArchNames[static_cast<unsigned>(AK)].DefaultFPU;
276
278#define ARM_CPU_NAME(NAME, ID, DEFAULT_FPU, IS_DEFAULT, DEFAULT_EXT) \
279 .Case(NAME, DEFAULT_FPU)
280#include "llvm/TargetParser/ARMTargetParser.def"
281 .Default(ARM::FK_INVALID);
282}
283
285 if (CPU == "generic")
286 return ARM::ARMArchNames[static_cast<unsigned>(AK)].ArchBaseExtensions;
287
288 return StringSwitch<uint64_t>(CPU)
289#define ARM_CPU_NAME(NAME, ID, DEFAULT_FPU, IS_DEFAULT, DEFAULT_EXT) \
290 .Case(NAME, \
291 ARMArchNames[static_cast<unsigned>(ArchKind::ID)].ArchBaseExtensions | \
292 DEFAULT_EXT)
293#include "llvm/TargetParser/ARMTargetParser.def"
295}
296
298 std::vector<StringRef> &Features) {
299
300 if (HWDivKind == AEK_INVALID)
301 return false;
302
303 if (HWDivKind & AEK_HWDIVARM)
304 Features.push_back("+hwdiv-arm");
305 else
306 Features.push_back("-hwdiv-arm");
307
308 if (HWDivKind & AEK_HWDIVTHUMB)
309 Features.push_back("+hwdiv");
310 else
311 Features.push_back("-hwdiv");
312
313 return true;
314}
315
317 std::vector<StringRef> &Features) {
318
319 if (Extensions == AEK_INVALID)
320 return false;
321
322 for (const auto &AE : ARCHExtNames) {
323 if ((Extensions & AE.ID) == AE.ID && !AE.Feature.empty())
324 Features.push_back(AE.Feature);
325 else if (!AE.NegFeature.empty())
326 Features.push_back(AE.NegFeature);
327 }
328
329 return getHWDivFeatures(Extensions, Features);
330}
331
333 return ARMArchNames[static_cast<unsigned>(AK)].Name;
334}
335
337 return ARMArchNames[static_cast<unsigned>(AK)].CPUAttr;
338}
339
341 return ARMArchNames[static_cast<unsigned>(AK)].getSubArch();
342}
343
345 return ARMArchNames[static_cast<unsigned>(AK)].ArchAttr;
346}
347
349 for (const auto &AE : ARCHExtNames) {
350 if (ArchExtKind == AE.ID)
351 return AE.Name;
352 }
353 return StringRef();
354}
355
356static bool stripNegationPrefix(StringRef &Name) {
357 return Name.consume_front("no");
358}
359
361 bool Negated = stripNegationPrefix(ArchExt);
362 for (const auto &AE : ARCHExtNames) {
363 if (!AE.Feature.empty() && ArchExt == AE.Name)
364 return StringRef(Negated ? AE.NegFeature : AE.Feature);
365 }
366
367 return StringRef();
368}
369
371 if (InputFPUKind == ARM::FK_INVALID || InputFPUKind == ARM::FK_NONE)
372 return ARM::FK_INVALID;
373
374 const ARM::FPUName &InputFPU = ARM::FPUNames[InputFPUKind];
375
376 // If the input FPU already supports double-precision, then there
377 // isn't any different FPU we can return here.
379 return InputFPUKind;
380
381 // Otherwise, look for an FPU entry with all the same fields, except
382 // that it supports double precision.
383 for (const ARM::FPUName &CandidateFPU : ARM::FPUNames) {
384 if (CandidateFPU.FPUVer == InputFPU.FPUVer &&
385 CandidateFPU.NeonSupport == InputFPU.NeonSupport &&
386 ARM::has32Regs(CandidateFPU.Restriction) ==
387 ARM::has32Regs(InputFPU.Restriction) &&
388 ARM::isDoublePrecision(CandidateFPU.Restriction)) {
389 return CandidateFPU.ID;
390 }
391 }
392
393 // nothing found
394 return ARM::FK_INVALID;
395}
396
398 if (InputFPUKind == ARM::FK_INVALID || InputFPUKind == ARM::FK_NONE)
399 return ARM::FK_INVALID;
400
401 const ARM::FPUName &InputFPU = ARM::FPUNames[InputFPUKind];
402
403 // If the input FPU already is single-precision only, then there
404 // isn't any different FPU we can return here.
405 if (!ARM::isDoublePrecision(InputFPU.Restriction))
406 return InputFPUKind;
407
408 // Otherwise, look for an FPU entry that has the same FPUVer
409 // and is not Double Precision. We want to allow for changing of
410 // NEON Support and Restrictions so CPU's such as Cortex-R52 can
411 // select between SP Only and Full DP modes.
412 for (const ARM::FPUName &CandidateFPU : ARM::FPUNames) {
413 if (CandidateFPU.FPUVer == InputFPU.FPUVer &&
414 !ARM::isDoublePrecision(CandidateFPU.Restriction)) {
415 return CandidateFPU.ID;
416 }
417 }
418
419 // nothing found
420 return ARM::FK_INVALID;
421}
422
424 StringRef ArchExt,
425 std::vector<StringRef> &Features,
426 ARM::FPUKind &ArgFPUKind) {
427
428 size_t StartingNumFeatures = Features.size();
429 const bool Negated = stripNegationPrefix(ArchExt);
430 uint64_t ID = parseArchExt(ArchExt);
431
432 if (ID == AEK_INVALID)
433 return false;
434
435 for (const auto &AE : ARCHExtNames) {
436 if (Negated) {
437 if ((AE.ID & ID) == ID && !AE.NegFeature.empty())
438 Features.push_back(AE.NegFeature);
439 } else {
440 if ((AE.ID & ID) == AE.ID && !AE.Feature.empty())
441 Features.push_back(AE.Feature);
442 }
443 }
444
445 if (CPU == "")
446 CPU = "generic";
447
448 if (ArchExt == "fp" || ArchExt == "fp.dp") {
449 const ARM::FPUKind DefaultFPU = getDefaultFPU(CPU, AK);
451 if (ArchExt == "fp.dp") {
452 const bool IsDP = ArgFPUKind != ARM::FK_INVALID &&
453 ArgFPUKind != ARM::FK_NONE &&
455 if (Negated) {
456 /* If there is no FPU selected yet, we still need to set ArgFPUKind, as
457 * leaving it as FK_INVALID, would cause default FPU to be selected
458 * later and that could be double precision one. */
459 if (ArgFPUKind != ARM::FK_INVALID && !IsDP)
460 return true;
461 FPUKind = findSinglePrecisionFPU(DefaultFPU);
462 if (FPUKind == ARM::FK_INVALID)
463 FPUKind = ARM::FK_NONE;
464 } else {
465 if (IsDP)
466 return true;
467 FPUKind = findDoublePrecisionFPU(DefaultFPU);
468 if (FPUKind == ARM::FK_INVALID)
469 return false;
470 }
471 } else if (Negated) {
472 FPUKind = ARM::FK_NONE;
473 } else {
474 FPUKind = DefaultFPU;
475 }
476 ArgFPUKind = FPUKind;
477 return true;
478 }
479 return StartingNumFeatures != Features.size();
480}
481
484 return ARM::ArchKind::INVALID;
485 if (AK < ARM::ArchKind::ARMV9A || AK > ARM::ArchKind::ARMV9_3A)
486 return ARM::ArchKind::INVALID;
487 unsigned AK_v8 = static_cast<unsigned>(ARM::ArchKind::ARMV8_5A);
488 AK_v8 += static_cast<unsigned>(AK) -
489 static_cast<unsigned>(ARM::ArchKind::ARMV9A);
490 return static_cast<ARM::ArchKind>(AK_v8);
491}
492
494 ArchKind AK = parseArch(Arch);
495 if (AK == ArchKind::INVALID)
496 return StringRef();
497
498 // Look for multiple AKs to find the default for pair AK+Name.
499 for (const auto &CPU : CPUNames) {
500 if (CPU.ArchID == AK && CPU.Default)
501 return CPU.Name;
502 }
503
504 // If we can't find a default then target the architecture instead
505 return "generic";
506}
507
509 StringRef Syn = getHWDivSynonym(HWDiv);
510 for (const auto &D : HWDivNames) {
511 if (Syn == D.Name)
512 return D.ID;
513 }
514 return AEK_INVALID;
515}
516
518 for (const auto &A : ARCHExtNames) {
519 if (ArchExt == A.Name)
520 return A.ID;
521 }
522 return AEK_INVALID;
523}
524
526 for (const auto &C : CPUNames) {
527 if (CPU == C.Name)
528 return C.ArchID;
529 }
530 return ArchKind::INVALID;
531}
532
534 for (const auto &Arch : CPUNames) {
535 if (Arch.ArchID != ArchKind::INVALID)
536 Values.push_back(Arch.Name);
537 }
538}
539
541 StringRef ArchName = TT.getArchName();
542
543 if (TT.isOSBinFormatMachO()) {
544 if (TT.getEnvironment() == Triple::EABI ||
545 TT.getOS() == Triple::UnknownOS ||
546 parseArchProfile(ArchName) == ProfileKind::M)
547 return "aapcs";
548 if (TT.isWatchABI())
549 return "aapcs16";
550 return "apcs-gnu";
551 } else if (TT.isOSWindows())
552 // FIXME: this is invalid for WindowsCE.
553 return "aapcs";
554
555 // Select the default based on the platform.
556 switch (TT.getEnvironment()) {
557 case Triple::Android:
558 case Triple::GNUEABI:
562 case Triple::MuslEABI:
564 case Triple::OpenHOS:
565 return "aapcs-linux";
566 case Triple::EABIHF:
567 case Triple::EABI:
568 return "aapcs";
569 default:
570 if (TT.isOSNetBSD())
571 return "apcs-gnu";
572 if (TT.isOSFreeBSD() || TT.isOSFuchsia() || TT.isOSOpenBSD() ||
573 TT.isOSHaiku() || TT.isOHOSFamily())
574 return "aapcs-linux";
575 return "aapcs";
576 }
577}
578
580 if (ABIName.empty())
582
583 if (ABIName == "aapcs16")
584 return ARM_ABI_AAPCS16;
585
586 if (ABIName.starts_with("aapcs"))
587 return ARM_ABI_AAPCS;
588
589 if (ABIName.starts_with("apcs"))
590 return ARM_ABI_APCS;
591
592 return ARM_ABI_UNKNOWN;
593}
594
596 if (MArch.empty())
597 MArch = Triple.getArchName();
598 MArch = llvm::ARM::getCanonicalArchName(MArch);
599
600 // Some defaults are forced.
601 switch (Triple.getOS()) {
606 if (!MArch.empty() && MArch == "v6")
607 return "arm1176jzf-s";
608 if (!MArch.empty() && MArch == "v7")
609 return "cortex-a8";
610 break;
612 // FIXME: this is invalid for WindowsCE
613 if (llvm::ARM::parseArchVersion(MArch) <= 7)
614 return "cortex-a9";
615 break;
622 if (MArch == "v7k")
623 return "cortex-a7";
624 break;
625 default:
626 break;
627 }
628
629 if (MArch.empty())
630 return StringRef();
631
633 if (!CPU.empty() && CPU != "invalid")
634 return CPU;
635
636 // If no specific architecture version is requested, return the minimum CPU
637 // required by the OS and environment.
638 switch (Triple.getOS()) {
640 return "arm1176jzf-s";
642 switch (Triple.getEnvironment()) {
647 return "arm926ej-s";
648 default:
649 return "strongarm";
650 }
652 return "cortex-a8";
654 return "cortex-a53";
655 default:
656 switch (Triple.getEnvironment()) {
661 return "arm1176jzf-s";
662 default:
663 return "arm7tdmi";
664 }
665 }
666
667 llvm_unreachable("invalid arch name");
668}
669
671 outs() << "All available -march extensions for ARM\n\n"
672 << " " << left_justify("Name", 20)
673 << (DescMap.empty() ? "\n" : "Description\n");
674 for (const auto &Ext : ARCHExtNames) {
675 // Extensions without a feature cannot be used with -march.
676 if (!Ext.Feature.empty()) {
677 std::string Description = DescMap[Ext.Name].str();
678 // With SIMD, this links to the NEON feature, so the description should be
679 // taken from here, as SIMD does not exist in TableGen.
680 if (Ext.Name == "simd")
681 Description = DescMap["neon"].str();
682 outs() << " "
683 << format(Description.empty() ? "%s\n" : "%-20s%s\n",
684 Ext.Name.str().c_str(), Description.c_str());
685 }
686 }
687}
static ARM::FPUKind findSinglePrecisionFPU(ARM::FPUKind InputFPUKind)
static StringRef getHWDivSynonym(StringRef HWDiv)
static bool stripNegationPrefix(StringRef &Name)
static ARM::ProfileKind getProfileKind(ARM::ArchKind AK)
static ARM::FPUKind findDoublePrecisionFPU(ARM::FPUKind InputFPUKind)
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
#define F(x, y, z)
Definition MD5.cpp:55
static cl::opt< std::set< SPIRV::Extension::Extension >, false, SPIRVExtensionsParser > Extensions("spirv-ext", cl::desc("Specify list of enabled SPIR-V extensions"))
This file implements the StringSwitch template, which mimics a switch() statement whose cases are str...
static Triple::ArchType parseArch(StringRef ArchName)
Definition Triple.cpp:581
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
bool empty() const
Definition StringMap.h:108
StringMap - This is an unconventional map that is specialized for handling keys that are "strings",...
Definition StringMap.h:133
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
bool starts_with(StringRef Prefix) const
Check if this string starts with the given Prefix.
Definition StringRef.h:261
constexpr bool empty() const
empty - Check if the string is empty.
Definition StringRef.h:143
A switch()-like statement whose cases are string literals.
StringSwitch & Case(StringLiteral S, T Value)
StringSwitch & Cases(std::initializer_list< StringLiteral > CaseStrings, T Value)
Triple - Helper class for working with autoconf configuration names.
Definition Triple.h:47
OSType getOS() const
Get the parsed operating system type of this triple.
Definition Triple.h:422
EnvironmentType getEnvironment() const
Get the parsed environment type of this triple.
Definition Triple.h:430
LLVM_ABI StringRef getArchName() const
Get the architecture (first) component of the triple.
Definition Triple.cpp:1396
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr struct llvm::ARM::@324103115345140202011004052154345301224214323271 HWDivNames[]
LLVM_ABI StringRef getArchExtName(uint64_t ArchExtKind)
LLVM_ABI StringRef getFPUSynonym(StringRef FPU)
LLVM_ABI bool getFPUFeatures(FPUKind FPUKind, std::vector< StringRef > &Features)
LLVM_ABI StringRef getCanonicalArchName(StringRef Arch)
MArch is expected to be of the form (arm|thumb)?(eb)?(v.
LLVM_ABI uint64_t parseHWDiv(StringRef HWDiv)
LLVM_ABI StringRef getCPUAttr(ArchKind AK)
LLVM_ABI StringRef getArchName(ArchKind AK)
LLVM_ABI void fillValidCPUArchList(SmallVectorImpl< StringRef > &Values)
LLVM_ABI LLVM_READONLY ARMABI computeTargetABI(const Triple &TT, StringRef ABIName="")
LLVM_ABI uint64_t parseArchExt(StringRef ArchExt)
LLVM_ABI ArchKind convertV9toV8(ArchKind AK)
LLVM_ABI LLVM_READONLY StringRef computeDefaultTargetABI(const Triple &TT)
LLVM_ABI ArchKind parseArch(StringRef Arch)
LLVM_ABI FPURestriction getFPURestriction(FPUKind FPUKind)
LLVM_ABI bool appendArchExtFeatures(StringRef CPU, ARM::ArchKind AK, StringRef ArchExt, std::vector< StringRef > &Features, FPUKind &ArgFPUKind)
LLVM_ABI StringRef getArchSynonym(StringRef Arch)
Converts e.g. "armv8" -> "armv8-a".
static constexpr FPUName FPUNames[]
LLVM_ABI StringRef getDefaultCPU(StringRef Arch)
LLVM_ABI StringRef getArchExtFeature(StringRef ArchExt)
LLVM_ABI ProfileKind parseArchProfile(StringRef Arch)
LLVM_ABI FPUKind parseFPU(StringRef FPU)
LLVM_ABI StringRef getSubArch(ArchKind AK)
uint64_t ID
LLVM_ABI StringRef getARMCPUForArch(const llvm::Triple &Triple, StringRef MArch={})
Get the (LLVM) name of the minimum ARM CPU for the arch we are targeting.
LLVM_ABI unsigned parseArchVersion(StringRef Arch)
bool has32Regs(const FPURestriction restriction)
LLVM_ABI NeonSupportLevel getFPUNeonSupportLevel(FPUKind FPUKind)
LLVM_ABI ArchKind parseCPUArch(StringRef CPU)
bool isDoublePrecision(const FPURestriction restriction)
StringRef Name
constexpr ExtName ARCHExtNames[]
LLVM_ABI unsigned getArchAttr(ArchKind AK)
LLVM_ABI StringRef getFPUName(FPUKind FPUKind)
LLVM_ABI FPUVersion getFPUVersion(FPUKind FPUKind)
LLVM_ABI bool getHWDivFeatures(uint64_t HWDivKind, std::vector< StringRef > &Features)
@ SP_D16
Only single-precision instructions, with 16 D registers.
@ D16
Only 16 D registers.
LLVM_ABI uint64_t getDefaultExtensions(StringRef CPU, ArchKind AK)
LLVM_ABI FPUKind getDefaultFPU(StringRef CPU, ArchKind AK)
LLVM_ABI bool getExtensionFeatures(uint64_t Extensions, std::vector< StringRef > &Features)
static constexpr ArchNames ARMArchNames[]
constexpr CpuNames CPUNames[]
LLVM_ABI void PrintSupportedExtensions(StringMap< StringRef > DescMap)
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI raw_fd_ostream & outs()
This returns a reference to a raw_fd_ostream for standard output.
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
Definition Format.h:129
FormattedString left_justify(StringRef Str, unsigned Width)
left_justify - append spaces after string so total output is Width characters.
Definition Format.h:150
FPURestriction Restriction
NeonSupportLevel NeonSupport